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Optimal Granularity of Test Generation in a 
Distributed System 

HIDE0 FUJIWARA, FELLOW, IEEE, AND TOMOO INOUE 

Abstract-The problem of test generation for logic circuits is known 
to be NP-hard, and hence, it is very hard to speedup the test generation 
process due to its backtracking mechanism. This paper presents an 
approach to parallel processing of test generation for logic circuits in 
a loosely-coupled distributed network of general purpose computers, 
and analyzes the effects of the allocation of target faults to processors, 
the optimal granularity (grain size of target faults), and the speedup 
ratio of the multiple processor system to a single processor system. 

I .  INTRODUCTION 
HE TEST generation process usually includes both T test-pattern generation and fault simulation. For test- 

pattern generation, several efficient algorithms such as 
PODEM [I], FAN [2], and SOCRATES [3] have been 
reported. However, the problem of test-pattern generation 
for logic circuits is known to be NP-hard [4], [ 5 ] ,  and 
hence, the computational requirements grow exponen- 
tially in general as the circuit size increases. For simulat- 
ing very large faulted circuits, deductive and concurrent 
fault simulation are known to be efficient. The computa- 
tional complexity of this fault simulation is less than 
O (  G 3 )  and seems to behave as an O (  G 2 )  algorithm [6]- 
[8]. These facts imply that a test generation system im- 
plemented on a single general purpose computer takes a 
prohibitive amount of computing time for very large cir- 
cuits. 

Handling the increased logic complexity of VLSI cir- 
cuits is severely limited by the slowness of conventional 
CAD tools on a general purpose computer. To alleviate 
this, several kinds of special purpose hardware accelera- 
tors have been reported, e.g., IBM’s Yorktown Simula- 
tion Engine (YSE) [9], NEC’s Hardware Accelerator 
(HAL) [ 101, Zycad, Silicon Solutions, Daisy, etc. [ 1 I], 
[12]. There are attempts to accelerate fault simulation [13] 
and test-pattern generation [ 141 using hardware logic sim- 
ulators. Kramer’s approach [15] uses the MIT Connection 
Machine as a test-pattern generation engine. Until now, 
the results of [ 141, [ 151 were that the speedup advantage 
can be gained only for small circuits because of the ex- 
ponential nature of the proposed algorithms in which all 
input combinations are wastefully analyzed. Elziq et a l .  
[ 161 surveyed the state-of-the-art logic verification and 
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fault simulation machines and presented their view such 
that a successful test generation system should be built as 
an expert system or a knowledge-based system using a 
special purpose engine, though no concrete configuration 
of the test-pattern generation engine was presented. 

Although these special purpose hardware engines cer- 
tainly provide the fastest simulation, their hardware cost 
is very expensive and their special purpose architecture is 
inflexible to other applications such as test generation. An 
alternative to special purpose hardware engines is the use 
of a loosely-coupled distributed network of general pur- 
pose computers which are less expensive and much more 
flexible than special purpose hardware engines. There is 
a report of a distributed fault simulator implemented on a 
loosely-coupled network of general purpose computers in 
which a close to linear speedup is achieved [17]. For test 
generation, there is a report of parallel test generation on 
a loosely-coupled distributed system which predicted the 
performance of parallel processing by dealing with mul- 
tiple heuristic schemes [20]. There is also a report, which 
appeared after this paper had been submitted, of parallel 
test generation on a tightly-coupled multiprocessor sys- 
tem which presented heuristics to partition faults for par- 
allel test generation with minimization of the overall run- 
time and test length [26]. 

In Motohara et a l .  [ 181 and Fujiwara [ 191, two types of 
parallelisms, fault parallelism and search parallelism 
were presented, both of which parallelize test generation 
using tightly-coupled multiple processor systems. Fault 
parallelism refers to dealing with different faults in par- 
allel, and search parallelism refers to searching different 
nodes of a decision tree (in a branch-and-bound search) 
or to searching different input-vectors in parallel. Usu- 
ally, a large percentage of faults are easy-to-detect and 
only a small fraction of faults are hard-to-detect faults 
which remain undetected after a large number of back- 
tracks. So, the approach combined with both fault paral- 
lelism and search parallelism might be most effective if 
fault parallelism is first performed and then search paral- 
lelism is applied to the remaining hard-to-detect faults. In 
this paper, we shall consider the fault parallelism on a 
loosely-coupled distributed network of general purpose 
computers instead of a tightly-coupled multiple processor 
system. In the fault parallelism of Motohara et al .  [18] 
and Fujiwara 1191, the number of target faults allocated 
to a processor each time is only one, and hence, no opti- 
mal granularity of target faults (size of target faults) is 
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considered there. In this paper we shall consider the fault 
parallelism in which a cluster of faults will be allocated 
to each processor instead of allocating one fault each time. 
We shall analyze the effect of the number of faults allo- 
cated to a processor each time to find the optimal granu- 
larity in both cases of static and dynamic task allocation 
and derive the speedup ratio of the multiple processor sys- 
tem to a single processor system, in  order to see the per- 
formance of the multiple processor system. 
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11. ARCHITECTURE OF THE DISTRIBUTED SYSTEM 

The architecture of our loosely-coupled multiple pro- 
cessor system is illustrated in Fig. 1. The client and serv- 
ers are connected via a communication bus. In this net- 
work, a client processor requests a remote server processor 
to execute a task and to return the results to the client. 
When a server finishes its assigned task, it sends the result 
to the client and requests a new task. The client saves the 
result and provides a new task for the server. Client ser- 
vice discipline is first come, first served. In this distrib- 
uted processing, the original problem is partitioned into 
subproblems or tasks (task partitioning), and each task is 
allocated to the servers (task allocation). 

Since our problem is test generation, our goal is to gen- 
erate test-patterns for all faults. The problem domain is 
thus a set of faults. Here, we shall consider distribution 
of a cluster of faults (called target faults) to servers to 
generate test-patterns for them. Therefore, a subproblem 
or a task allocated to a server is a test generation problem 
for a cluster of faults. For a given cluster of faults, each 
server can perform test-pattern generation and fault sim- 
ulation. The result is a set of faults which are detected by 
a set of generated test-patterns, a set of redundant faults, 
and a set of aborted faults due to the exceeded backtrack- 
ings. This information is sent to the client and the fault 
table is updated by the client. The client then extracts a 
new cluster of faults which have not yet been processed 
by any server and sends it to the server. The server then 
executes test generation for the cluster of faults. This pro- 
cess continues until all faults in the fault table are pro- 
cessed. 

When the client allocates tasks to servers, the size of 
tasks (granularity) has to be determined. In this task al- 
location, we can consider two ways: static and dynamic 
task allocation. Static task allocation refers to allocating 
the same number of target faults to each server through- 
out. In dynamic task allocation, the number of target faults 
will vary as time goes on. In both cases, if we decrease 
the granularity in order to exploit better parallelism, then 
servers complete the tasks more rapidly, and hence, send 
requests to the client more frequently. This increases the 
communication overhead and in turn slows down proces- 
sors. In this way, the total computation time is influenced 
by the size of target faults allocated to each server, and 
hence, it is important to predict the optimal granularity 
which will yield the best performance for a given distrib- 

Fig. I .  Architecture of the distributed system 

uted system, though it is very difficult to predict the op- 
timal dynamic granularity since the interaction among 
various performance factors is very complex. 

111. FORMULATION OF THE PROBLEM 

We shall consider a distributed network consisting of a 
client and N servers as shown in Fig. 1. Let M be the total 
number of faults of a given circuit. A process of test-pat- 
tern generation for a fault J is called a process for fault 
J .  The result of a process for a fault is whether 1) the fault 
is detected by a test-pattern, or 2) the fault is redundant, 
or 3) the process is aborted due to the exceeded backtrack- 
ing. Let T~, be the processing time of serverj for faultJ;, 
i.e., the computation time of server j to complete test- 
pattern generation process for fault J;. 

Let 6,J be the probability that process for fault J is al- 
located to server j .  Let be the probability that server j 
communicates to the client after process for fault J .  Let 
T, be the mean communication time which includes wait- 
ing time due to contention and data transfer time between 
the client and a server. Then, the average time necessary 
to complete all processes allocated to serverj is 

M 

T, = r = l  %,(T, + h y 4 .  ( 1 )  

The average time necessary to complete all processes is 
defined by the maximum of T,: 

T = max { T , ) .  
The problem is thus to find a task allocation schedule 
which minimizes T. 

IV. HOMOGENEOUS PROBLEM WITH STATIC TASK 
ALLOCATION 

4.1. Optimal Granularity 
First we shall consider static task allocation of faults 

where the same number of target faults will be transferred 
from client to a server at each communication. 

To obtain the optimum task allocation schedule, it is 
important to equalize the load of servers, e.g., hard-to- 
detect faults are distributed equally among the servers as 
well as easy-to-detect faults. However, it is very difficult 
or even impossible to know which faults are hard- or easy- 
to-detect a priori before test-generation. One solution 
might be to estimate the testability of faults by testability 
analysis using controllability/observability measures [25]. 
Here, we shall adopt a more stringent assumption that 
every fault will be distributed equally among the servers 
as follows. 
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We assume a homogeneous case such that 1) all servers 
are uniform, i.e., rfJ = r, for all faultsf, and serversj and 
2) for any fault i the probability that fault i is allocated to 
server j is equiprobable for all servers j independently of 
server j ,  i .e.,  6, = 6, for all faults J and servers j .  The 
second assumption that the probability 6,, is equiprobable 
intends that every fault will be distributed equally among 
the servers. 

Let m be the number of target faults transferred from 
the client to any serverj at each communication. Suppose 
fault i is in the set of m target faults allocated to serverj. 
Then the probability that server j communicates to the 
client after process for fault f ,  is 1 / m  since such a com- 
munication occurs only once for those m faults. Hence, 
A, = l / m .  Let r be the mean processing time for each 
fault, i.e.: 

M 

7,  
i =  I r = -  
M ( 3 )  

Case I (Without Fault Simulation): First, suppose that 
test-pattern generation without fault simulation is per- 
formed for each fault. Then, the probability that process 
for fault J is allocated to server j is 6, = 1 / N .  By sub- 
stituting these expressions to ( 1 )  and (2), we have 

M 

(4) 

Since this expression is a monotone deceasing function of 
m and 1 I m I M / N ,  the minimum of T is obtained 
when m = M / N :  

The above expression means that for the homogeneous 
case such that T~~ = ri and 6, = 6; for all faults f ,  and 
servers j and that test-pattern generation process without 
fault simulation is performed for each fault, the best per- 
formance is obtained when each server receives all target 
faults only once from the client. However, it may often 
occur that a test-pattern generated for a fault can also be 
a test-pattern for other faults. Hence, if we apply the fault 
simulation process after the test-pattern generation pro- 
cess, then all faults may not have to be processed. 

Case II (With Fault Simulation): Suppose that the client 
requests a server process m target faults. The server gen- 
erates a test-pattern for one of m faults, and finds out all 
detected faults by the test-pattern where fault simulation 
is performed for all faults in the circuit, not just those in 
the set of m target faults. It repeats test-pattern generation 

~ 
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and fault simulation until all target faults are processed. 
Suppose that after this test generation process for m target 
faults completes, pm faults are newly found to be either 
detectable or redundant. Note that those newly found pm 
faults are from all faults in the circuit, not just in the set 
of m target faults. The term “newly” means that those 
faults were known to be neither detectable nor redundant 
but have been newly found to be either detectable or re- 
dundant. Let us call those faults newly processed faults. 

Let us define the ratio of newly processed faults to tar- 
get faults by 

. (6) 
number of newly processed faults per server 

number of target faults per server 

Note that this ratio will decrease as the number of pro- 
cessed faults increases. Therefore, it is expressed as p; ,  
the ratio for ith processed fau l t i .  

During each iteration of the server process, m target 
faults are processed by the server and pm faults are newly 
found to be either detectable or redundant through both 
test-pattern generation and fault simulation. Some faults 
are found to be either detectable or redundant only by test- 
pattern generation and other faults are found to be detect- 
able after fault simulation. Hence, the probability that 
fault i is processed by some server is 

P =  

Pfm PI 

where pf is the ratio of newly processed faults to target 
faults when fault J is processed. 

On the other hand, the probability that fault i is pro- 
cessed by some server is defined by E!=, 6,,. Therefore, 
we have 

N 

( 8 )  
1 

J =  I PI 

c 6, = -. 

From the assumption that 6, = 6,, we have 
N N c 6, = 6; = N6;. 

J =  I j =  1 

Hence, from (8) and (9) we have 

(9) 

The average time necessary to complete all processes al- 
located to serverj is obtained from (1) by substituting (10) 
and r, = ri and A, = 1 / m :  

The right side of the above equation is independent of the 
indexj, i.e., the average processing time of serverj is the 
same as that of other server. This is caused by the as- 
sumption of homogeneity that all servers are uniform and 
for any fault i the probability that fault i is allocated to 
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serverj is equiprobable for all servers j .  Hence, the total 
amount of processing and communication time Tis 

M 

T =  i = l  x L ( r i + ; )  Npi 

Number of Newly Processed Faults 

5wL 4.1.1.  Communication Time: 7,: We assume that 1) the 
size of data transferred between the client and a server is 
constant, and hence, the data transfer time during com- 
munication between the client and servers is constant, and '". . that 2) the number of requests from servers to the client 0 io0 200 300 400 

is proportional to the total number of servers, N ,  and Numbcr of Processes 

hence, the waiting time during communication between 
the client and servers is proportional to N .  Hence, we have 

(a)  

Number of Newly Processed Faults 

loo0 

7, = to + t lN (13)  

where to and r I  are constants. 
4.1.2. Ratio of Newly Processed Faults to Target 

Faults: p:  Fig. 2(a) and (b) give the typical curves of the 

c5315 and c7552 of the ISCAS'85 benchmark circuits 
[24]. The axis of ordinates shows the number of faults 
which are newly found to be detectable by fault simulation 

number of newly processed faults for two large circuits 500 

after test-pattern generation for a target fault, and the axis 0 100 200 300 400 
of abscissas shows the number of processes. From this Number of Proccsres 

figure we can see that the number of newly processed 

faults increases. Hence, we assume that the ratio of newly 
processed faults to target faults, p ( x ) ,  is 

(b)  
quickly decrease as the number Of processed Flg 2. Number ot newly processed faults ( a )  cS315 (b)  c7S52 

1 
p ( x )  = 

cessed can be expressed as 

( 16) 
( 14) 1 

p s ( o  = r, + r , i  + r2mN' 
where x is the number of processed faults and r, and rl 
are constants. 

The ratio p (x )  will also decrease monotonically as the 
number of target faults increases. After receiving the list 
of detected faults and redundant faults from a server, the 
client renews the fault table by flagging the newly de- 
tected faults and redundant faults. Since many servers are 
working simultaneously, some servers may find the same 
faults detected. These overlapped processes for the faults 
that are simultaneously detected by different servers are 
wasteful. The number of newly processed faults per fault 
will decrease as the number of target faults per server and 
the number of servers increases. Therefore, we can as- 
sume 

where r2 is a constant. In the above expression, the factor 
r2mN accounts for the decrease ratio of newly processed 
faults due to overlapped processing. 

Suppose that the number of processed faults is i when 
faultf,(i, is processed where n (n: 312 -+ 312) is a per- 
mutation of 312 = { 1, 2, * - - , M}. Then, from (15), the 
ratio of newly processed faults when fault f T C i  is pro- 

Let 6 be the set of all permutations of 32. There is a one- 
to-one correspondence between permutations of 312 and 
sequences of faults. The total number of sequences is M ! .  

Next we shall take an average of total processing time 
for all permutations. From (12) and (16) we have 

T =  
M !  

On the other hand we have 

M 

= i =  c I i ( M ! r )  ( f rom(3)) .  (18) 

Hence, substituting (17) by (1 8) we have 
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Partially differentiating T by m, we have 

100 

( ro + r l  y ) r c )  

' (21) d m  - M (  N r2N7 - 
dT 

m2 

M = 10OOO 
50 - N =  100 

K = I  

t o =  t l = O 1  

r ,Ol0ooool  

0 r l = 0 ~ 1  

0 r l = Q O O O W I  

40 - I -0ooo1 

30 - 

20 -. . * '  ......'* 
10 ~ *'.." . . o o o o o  

> o o o o ~ o o  
~ , , O ~  0 a 

, I  I I I ,  , , I A  

10 20 30 40 50 60 70 80 90 

Then, we have the minimum of T 

100 

when 

Fig. 3(a)-(c) presents the total amount of processing 
and communication time as a function of the number of 
target faults per server for four cases of different param- 
eters. Fig 3(a) shows two cases of to = t I  = 0.1 and ro = 
t I  = 0.01. From this figure we can see that as the com- 
munication time decreases, both the optimal granularity 
and the total processing time decrease. Fig. 3(b) com- 
pares two cases of r2 = 0.00001 and 0.000001. From this 
figure, we can observe that as the r2 decreases, the total 
processing time decreases. This is because the factor r2 mN 
which accounts for the decrease ratio of newly processed 
faults due to overlapped processing decreases. From Fig. 
3(c) which compares two cases of r I  = 0.00001 and 
0.000001, we can see that both the total processing time 
and the optimal granularity decreases as the value of rI 
decreases. This is because as the value of rI decreases, 
the ratio of newly processed faults increases, and hence, 
the effect of fault simulation increases. 

The parallel test generation system has been imple- 
mented on a network (ethernet) of eleven SUN worksta- 
tions (one SUN3/60 for client and ten SUN3/50's for 
servers) where the FAN algorithm [2] was used. Fig. 4 
gives the curves of total processing time versus the num- 
ber of target faults for the largest circuit c7552 of the 
ISCAS'85 benchmark circuits [24] on the network. From 
this figure, we can see that the shape of the curve coin- 
cides closely with those of Fig. 3 obtained from the above 
analysis under a homogeneous model. 

4.2. Speedup of Multiple Processor Systems 
The speedup of a multiple processor system is defined 

as the ratio of the time required to complete test genera- 
tion for all faults on a single processor to the time required 
to execute the same process on an N-processor system. 
Therefore, we have 

Total Processing Time 

M =  1ORXl 
N =  100 "1 7 = I  

0 lo= 1,=0.l 

0 t0 = t ]=0.01 

20 

889 

0 
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Fig. 4. Experimental result of IO-server system 

Maximum Speedup 
100 
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Fig. 5 .  Maximum speedup ratio versus number of servers 

From ( 2 2 ) ,  (24), and (25), we have the maximum speedup Maximum Speedu? 
S,,, as follows: 

Tsingle 
Sm,, = - 

Tmin 

v y o  + r 1 2 /  % 

(26)  

i’ , ’/ 
< N .  

The above expression indicates that S,,, approaches to N 
if 

M +  1 
r2mN << ro + rl 7 

L 

and 
to + t , N  << 7. 

m 
In other words, if the decrease ratio of newly processed 
faults due to overlapped processing is much smaller than 
the ratio of newly processed faults, and if the data transfer 
time per fault and the waiting time per communication are 
much smaller than the processing time per fault, then S,,, 
approaches to N .  

Fig. 5 shows the maximum speedup ratio as a function 
of the number of servers for two cases of different param- 
eters of to = t l  = 0.1 and 0.01. The experimental result 
on the network of fifteen SUN workstations (one SUN3/ 
60 for client and fourteen SUN3/50’s for servers) is shown 
in Fig. 6. The figure gives the curve of the maximum 
speedup ratio as a function of the number of servers for 
the largest circuit c7552 of the ISCAS’85 benchmark cir- 
cuits [24] on the network. 

V. HOMOGENEOUS PROBLEM WITH DYNAMIC TASK 
ALLOCATION 

In the previous sections we have considered static task 
allocation of faults where the number of target faults 
transferred from the client to a server is always the same. 

5 

0 5 I O  
Number of servers 

Fig. 6.  Experimental result of maximum speedup 

In this section we shall consider dynamic task allocation 
of faults where the number of target faults transferred from 
the client to each server will vary as time goes on. 

Here, we consider again the homogeneous case; i.e.,  
r,, = r, and a,, = 6,  for all faul ts i  and serversj. Suppose 
that the number of processed faults is i when faultf,,, is 
processed where T (7r: 311. -+ 311.) is a permutation of 311. 
= { 1, 2, - . . , M }  . Let m, be the number of target faults 
allocated to a server when i faults have been processed by 
all servers till then. Then the total amount of processing 
and communication time T can be obtained by replacing 
in by m, in (17) as follows: 

M 

Partially differentiating the above expression by mi, we 
have 

dT (ro + r l i ) ~ c  
~ = ( r 2 N r  - 
dmi N mf 
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Then, we have the minimum of T for dynamic allocation: 

Tdynamlc = c - ( . / ( r o  + r , i ) T  + m)* (32)  
1 

i = ~  N 

M 

when 

From (33), the optimal granularity (the optimal size of 
target faults) of time c can be expressed as 

(34)  

where x ,  is the total number of faults processed by all 
servers till the time t .  Hence, the best performance or the 
test generation with the minimum computation time will 
be achieved if the dynamic task allocation is scheduled in 
accordance with the above expression as follows: the 
client counts up the total number x ,  of processed faults till 
now (at time f ) ,  calculates the number m ( r )  of target 
faults from (34), and then allocates m ( c )  target faults to 
an idle server. Note that although (34) represents a con- 
tinuous function, m ( r )  is defined as an integer. 

Let us consider next how much reduction of computa- 
tion time will be achieved by dynamic task allocation 
compared with static one. The minimum of T for static 
allocation is 

Hence, the difference between T,,,,,, and Tdynamlc is 

Tstatic - Tdynamic 

- 2- 5 - 
N [ = I  

M +  1 
* ( J r o  + rl ~ 2 - 6) > 0. (36) 

This equation is always positive for M > 1,  that is, the 
dynamic task allocation is always more efficient than the 
static one. 

VI. CONCLUSIONS 

In this paper, we have presented an approach to parallel 
processing of test generation for logic circuits in a loosely- 
coupled distributed network of general purpose com- 
puters, and analyzed the effects of the allocation of target 
faults to processors, the optimal granularity (grain size of 
target faults), and the speedup ratio of the multiple pro- 
cessor system to a single processor system. 

For the homogeneous case such that all servers are uni- 
form and for any fault i the probability that fault i is al- 
located to serverj is equiprobable for all servers j ,  if the 
test-pattern generation process is applied to each fault with 

no fault simulation, the total processing and communi- 
cation time T becomes a monotone decreasing function of 
the number of target faults m, and hence, the best perfor- 
mance is obtained when each server receives all target 
faults only once from the client, i.e., when m = M / N .  
However, it may often occur that a test-pattern generated 
for one fault can also be a test-pattern for other faults if 
one apply fault simulation. To analyze this case, we have 
introduced a ratio of newly processed faults to target 
faults, and derived the expressions of optimal granularity 
in both cases of static and dynamic task allocation. 

We have also derived an expression of the speedup of 
a multiple processor system in the homogeneous case. The 
analysis indicates that the speedup S,,, approaches N if 
the data transfer time per fault and the waiting time per 
communication are much smaller than the processing time 
per fault, and if the decrease ratio of newly processed 
faults due to overlapped processing is much smaller than 
the ratio of newly processed faults. From this, we can see 
that the task allocation which minimizes the factor of 
overlapped processing in the ratio p will yield the best 
performance for a multiple processor system, provided 
that the parameters associated with the hardware are 
given, though those parameters are hard to determine in 
advance. 
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