
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 9, NO. 8. AUGUST 1990 885

Optimal Granularity of Test Generation in a
Distributed System

HIDE0 FUJIWARA, FELLOW, IEEE, AND TOMOO INOUE

Abstract-The problem of test generation for logic circuits is known
to be NP-hard, and hence, it is very hard to speedup the test generation
process due to its backtracking mechanism. This paper presents an
approach to parallel processing of test generation for logic circuits in
a loosely-coupled distributed network of general purpose computers,
and analyzes the effects of the allocation of target faults to processors,
the optimal granularity (grain size of target faults), and the speedup
ratio of the multiple processor system to a single processor system.

I . INTRODUCTION
HE TEST generation process usually includes both T test-pattern generation and fault simulation. For test-

pattern generation, several efficient algorithms such as
PODEM [I], FAN [2], and SOCRATES [3] have been
reported. However, the problem of test-pattern generation
for logic circuits is known to be NP-hard [4], [5] , and
hence, the computational requirements grow exponen-
tially in general as the circuit size increases. For simulat-
ing very large faulted circuits, deductive and concurrent
fault simulation are known to be efficient. The computa-
tional complexity of this fault simulation is less than
O (G 3) and seems to behave as an O (G 2) algorithm [6]-
[8]. These facts imply that a test generation system im-
plemented on a single general purpose computer takes a
prohibitive amount of computing time for very large cir-
cuits.

Handling the increased logic complexity of VLSI cir-
cuits is severely limited by the slowness of conventional
CAD tools on a general purpose computer. To alleviate
this, several kinds of special purpose hardware accelera-
tors have been reported, e.g., IBM’s Yorktown Simula-
tion Engine (YSE) [9], NEC’s Hardware Accelerator
(HAL) [101, Zycad, Silicon Solutions, Daisy, etc. [1 I],
[12]. There are attempts to accelerate fault simulation [13]
and test-pattern generation [141 using hardware logic sim-
ulators. Kramer’s approach [15] uses the MIT Connection
Machine as a test-pattern generation engine. Until now,
the results of [141, [151 were that the speedup advantage
can be gained only for small circuits because of the ex-
ponential nature of the proposed algorithms in which all
input combinations are wastefully analyzed. Elziq et a l .
[161 surveyed the state-of-the-art logic verification and

Manuscript received March 14, 1989; revised September 1. 1989. This

The authors are with the Department of Computer Science, Meiji Uni-

IEEE Log Number 9036175.

paper was recommended by Associate Editor S . C. Seth.

versity. Tarna-ku, Kawasaki 2 14, Japan.

fault simulation machines and presented their view such
that a successful test generation system should be built as
an expert system or a knowledge-based system using a
special purpose engine, though no concrete configuration
of the test-pattern generation engine was presented.

Although these special purpose hardware engines cer-
tainly provide the fastest simulation, their hardware cost
is very expensive and their special purpose architecture is
inflexible to other applications such as test generation. An
alternative to special purpose hardware engines is the use
of a loosely-coupled distributed network of general pur-
pose computers which are less expensive and much more
flexible than special purpose hardware engines. There is
a report of a distributed fault simulator implemented on a
loosely-coupled network of general purpose computers in
which a close to linear speedup is achieved [17]. For test
generation, there is a report of parallel test generation on
a loosely-coupled distributed system which predicted the
performance of parallel processing by dealing with mul-
tiple heuristic schemes [20]. There is also a report, which
appeared after this paper had been submitted, of parallel
test generation on a tightly-coupled multiprocessor sys-
tem which presented heuristics to partition faults for par-
allel test generation with minimization of the overall run-
time and test length [26].

In Motohara et a l . [181 and Fujiwara [191, two types of
parallelisms, fault parallelism and search parallelism
were presented, both of which parallelize test generation
using tightly-coupled multiple processor systems. Fault
parallelism refers to dealing with different faults in par-
allel, and search parallelism refers to searching different
nodes of a decision tree (in a branch-and-bound search)
or to searching different input-vectors in parallel. Usu-
ally, a large percentage of faults are easy-to-detect and
only a small fraction of faults are hard-to-detect faults
which remain undetected after a large number of back-
tracks. So, the approach combined with both fault paral-
lelism and search parallelism might be most effective if
fault parallelism is first performed and then search paral-
lelism is applied to the remaining hard-to-detect faults. In
this paper, we shall consider the fault parallelism on a
loosely-coupled distributed network of general purpose
computers instead of a tightly-coupled multiple processor
system. In the fault parallelism of Motohara et al . [18]
and Fujiwara 1191, the number of target faults allocated
to a processor each time is only one, and hence, no opti-
mal granularity of target faults (size of target faults) is

0278-0070/90/0800-0885$01 .OO O 1990 IEEE

886

considered there. In this paper we shall consider the fault
parallelism in which a cluster of faults will be allocated
to each processor instead of allocating one fault each time.
We shall analyze the effect of the number of faults allo-
cated to a processor each time to find the optimal granu-
larity in both cases of static and dynamic task allocation
and derive the speedup ratio of the multiple processor sys-
tem to a single processor system, in order to see the per-
formance of the multiple processor system.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 9. NO. 8 . AUGUST I990

11. ARCHITECTURE OF THE DISTRIBUTED SYSTEM

The architecture of our loosely-coupled multiple pro-
cessor system is illustrated in Fig. 1. The client and serv-
ers are connected via a communication bus. In this net-
work, a client processor requests a remote server processor
to execute a task and to return the results to the client.
When a server finishes its assigned task, it sends the result
to the client and requests a new task. The client saves the
result and provides a new task for the server. Client ser-
vice discipline is first come, first served. In this distrib-
uted processing, the original problem is partitioned into
subproblems or tasks (task partitioning), and each task is
allocated to the servers (task allocation).

Since our problem is test generation, our goal is to gen-
erate test-patterns for all faults. The problem domain is
thus a set of faults. Here, we shall consider distribution
of a cluster of faults (called target faults) to servers to
generate test-patterns for them. Therefore, a subproblem
or a task allocated to a server is a test generation problem
for a cluster of faults. For a given cluster of faults, each
server can perform test-pattern generation and fault sim-
ulation. The result is a set of faults which are detected by
a set of generated test-patterns, a set of redundant faults,
and a set of aborted faults due to the exceeded backtrack-
ings. This information is sent to the client and the fault
table is updated by the client. The client then extracts a
new cluster of faults which have not yet been processed
by any server and sends it to the server. The server then
executes test generation for the cluster of faults. This pro-
cess continues until all faults in the fault table are pro-
cessed.

When the client allocates tasks to servers, the size of
tasks (granularity) has to be determined. In this task al-
location, we can consider two ways: static and dynamic
task allocation. Static task allocation refers to allocating
the same number of target faults to each server through-
out. In dynamic task allocation, the number of target faults
will vary as time goes on. In both cases, if we decrease
the granularity in order to exploit better parallelism, then
servers complete the tasks more rapidly, and hence, send
requests to the client more frequently. This increases the
communication overhead and in turn slows down proces-
sors. In this way, the total computation time is influenced
by the size of target faults allocated to each server, and
hence, it is important to predict the optimal granularity
which will yield the best performance for a given distrib-

Fig. I . Architecture of the distributed system

uted system, though it is very difficult to predict the op-
timal dynamic granularity since the interaction among
various performance factors is very complex.

111. FORMULATION OF THE PROBLEM

We shall consider a distributed network consisting of a
client and N servers as shown in Fig. 1. Let M be the total
number of faults of a given circuit. A process of test-pat-
tern generation for a fault J is called a process for fault
J . The result of a process for a fault is whether 1) the fault
is detected by a test-pattern, or 2) the fault is redundant,
or 3) the process is aborted due to the exceeded backtrack-
ing. Let T~, be the processing time of serverj for faultJ;,
i.e., the computation time of server j to complete test-
pattern generation process for fault J;.

Let 6,J be the probability that process for fault J is al-
located to server j . Let be the probability that server j
communicates to the client after process for fault J . Let
T, be the mean communication time which includes wait-
ing time due to contention and data transfer time between
the client and a server. Then, the average time necessary
to complete all processes allocated to serverj is

M

T, = r = l %,(T, + h y 4 . (1)

The average time necessary to complete all processes is
defined by the maximum of T,:

T = max { T ,) .
The problem is thus to find a task allocation schedule
which minimizes T.

IV. HOMOGENEOUS PROBLEM WITH STATIC TASK
ALLOCATION

4.1. Optimal Granularity
First we shall consider static task allocation of faults

where the same number of target faults will be transferred
from client to a server at each communication.

To obtain the optimum task allocation schedule, it is
important to equalize the load of servers, e.g., hard-to-
detect faults are distributed equally among the servers as
well as easy-to-detect faults. However, it is very difficult
or even impossible to know which faults are hard- or easy-
to-detect a priori before test-generation. One solution
might be to estimate the testability of faults by testability
analysis using controllability/observability measures [25].
Here, we shall adopt a more stringent assumption that
every fault will be distributed equally among the servers
as follows.

FUJIWARA A N D INOUE: GRANULARITY OF TEST GENERATION IN A DlSTRlBUTED SYSTEM

We assume a homogeneous case such that 1) all servers
are uniform, i.e., rfJ = r, for all faultsf, and serversj and
2) for any fault i the probability that fault i is allocated to
server j is equiprobable for all servers j independently of
server j , i .e., 6, = 6, for all faults J and servers j . The
second assumption that the probability 6,, is equiprobable
intends that every fault will be distributed equally among
the servers.

Let m be the number of target faults transferred from
the client to any serverj at each communication. Suppose
fault i is in the set of m target faults allocated to serverj.
Then the probability that server j communicates to the
client after process for fault f , is 1 / m since such a com-
munication occurs only once for those m faults. Hence,
A, = l / m . Let r be the mean processing time for each
fault, i.e.:

M

7,
i = I r = -
M (3)

Case I (Without Fault Simulation): First, suppose that
test-pattern generation without fault simulation is per-
formed for each fault. Then, the probability that process
for fault J is allocated to server j is 6, = 1 / N . By sub-
stituting these expressions to (1) and (2), we have

M

(4)

Since this expression is a monotone deceasing function of
m and 1 I m I M / N , the minimum of T is obtained
when m = M / N :

The above expression means that for the homogeneous
case such that T~~ = ri and 6, = 6; for all faults f , and
servers j and that test-pattern generation process without
fault simulation is performed for each fault, the best per-
formance is obtained when each server receives all target
faults only once from the client. However, it may often
occur that a test-pattern generated for a fault can also be
a test-pattern for other faults. Hence, if we apply the fault
simulation process after the test-pattern generation pro-
cess, then all faults may not have to be processed.

Case II (With Fault Simulation): Suppose that the client
requests a server process m target faults. The server gen-
erates a test-pattern for one of m faults, and finds out all
detected faults by the test-pattern where fault simulation
is performed for all faults in the circuit, not just those in
the set of m target faults. It repeats test-pattern generation

~

887

and fault simulation until all target faults are processed.
Suppose that after this test generation process for m target
faults completes, pm faults are newly found to be either
detectable or redundant. Note that those newly found pm
faults are from all faults in the circuit, not just in the set
of m target faults. The term “newly” means that those
faults were known to be neither detectable nor redundant
but have been newly found to be either detectable or re-
dundant. Let us call those faults newly processed faults.

Let us define the ratio of newly processed faults to tar-
get faults by

. (6)
number of newly processed faults per server

number of target faults per server

Note that this ratio will decrease as the number of pro-
cessed faults increases. Therefore, it is expressed as p; ,
the ratio for ith processed fau l t i .

During each iteration of the server process, m target
faults are processed by the server and pm faults are newly
found to be either detectable or redundant through both
test-pattern generation and fault simulation. Some faults
are found to be either detectable or redundant only by test-
pattern generation and other faults are found to be detect-
able after fault simulation. Hence, the probability that
fault i is processed by some server is

P =

Pfm PI

where pf is the ratio of newly processed faults to target
faults when fault J is processed.

On the other hand, the probability that fault i is pro-
cessed by some server is defined by E!=, 6,,. Therefore,
we have

N

(8)
1

J = I PI

c 6, = -.

From the assumption that 6, = 6,, we have
N N c 6, = 6; = N6;.

J = I j = 1

Hence, from (8) and (9) we have

(9)

The average time necessary to complete all processes al-
located to serverj is obtained from (1) by substituting (10)
and r, = ri and A, = 1 / m :

The right side of the above equation is independent of the
indexj, i.e., the average processing time of serverj is the
same as that of other server. This is caused by the as-
sumption of homogeneity that all servers are uniform and
for any fault i the probability that fault i is allocated to

888 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 9. NO. 8. AUGUST 1990

serverj is equiprobable for all servers j . Hence, the total
amount of processing and communication time Tis

M

T = i = l x L (r i + ;) Npi

Number of Newly Processed Faults

5wL 4.1.1. Communication Time: 7,: We assume that 1) the
size of data transferred between the client and a server is
constant, and hence, the data transfer time during com-
munication between the client and servers is constant, and '". . that 2) the number of requests from servers to the client 0 io0 200 300 400

is proportional to the total number of servers, N , and Numbcr of Processes

hence, the waiting time during communication between
the client and servers is proportional to N . Hence, we have

(a)

Number of Newly Processed Faults

loo0

7, = to + t lN (13)

where to and r I are constants.
4.1.2. Ratio of Newly Processed Faults to Target

Faults: p: Fig. 2(a) and (b) give the typical curves of the

c5315 and c7552 of the ISCAS'85 benchmark circuits
[24]. The axis of ordinates shows the number of faults
which are newly found to be detectable by fault simulation

number of newly processed faults for two large circuits 500

after test-pattern generation for a target fault, and the axis 0 100 200 300 400
of abscissas shows the number of processes. From this Number of Proccsres

figure we can see that the number of newly processed

faults increases. Hence, we assume that the ratio of newly
processed faults to target faults, p (x) , is

(b)
quickly decrease as the number Of processed Flg 2. Number ot newly processed faults (a) cS315 (b) c7S52

1
p (x) =

cessed can be expressed as

(16)
(14) 1

p s (o = r, + r , i + r2mN'
where x is the number of processed faults and r, and rl
are constants.

The ratio p (x) will also decrease monotonically as the
number of target faults increases. After receiving the list
of detected faults and redundant faults from a server, the
client renews the fault table by flagging the newly de-
tected faults and redundant faults. Since many servers are
working simultaneously, some servers may find the same
faults detected. These overlapped processes for the faults
that are simultaneously detected by different servers are
wasteful. The number of newly processed faults per fault
will decrease as the number of target faults per server and
the number of servers increases. Therefore, we can as-
sume

where r2 is a constant. In the above expression, the factor
r2mN accounts for the decrease ratio of newly processed
faults due to overlapped processing.

Suppose that the number of processed faults is i when
faultf,(i, is processed where n (n: 312 -+ 312) is a per-
mutation of 312 = { 1, 2, * - - , M}. Then, from (15), the
ratio of newly processed faults when fault f T C i is pro-

Let 6 be the set of all permutations of 32. There is a one-
to-one correspondence between permutations of 312 and
sequences of faults. The total number of sequences is M ! .

Next we shall take an average of total processing time
for all permutations. From (12) and (16) we have

T =
M !

On the other hand we have

M

= i = c I i (M ! r) (f rom(3)) . (18)

Hence, substituting (17) by (1 8) we have

FUJIWARA A N D I N O U E : G R A N U L A R I T Y OF T E S T G E N E R A T I O N I N A DISTRIBUTED S Y S T E M

P M = loo00
50 - N = 100

7 = I

r -00001
lo = 11=0 I

40 - ~ l 0 o o o O l

0 r2=000001

30 8 0 r2=00lXW1

I
20 -.

0 e . ' - 6.
10- $e*.. . . .

~ ~ ~ o o o o o o o o o o ~ ~ l
%O

10 20 30 40 50 60 70 80 90

Partially differentiating T by m, we have

100

(ro + r l y) r c)

' (21) d m - M (N r2N7 -
dT

m2

M = 10OOO
50 - N = 100

K = I

t o = t l = O 1

r ,Ol0ooool

0 r l = 0 ~ 1

0 r l = Q O O O W I

40 - I -0ooo1

30 -

20 -. . * ' '*
10 ~ *'.." . . o o o o o

> o o o o ~ o o
~ , , O ~ 0 a

, I I I I , , , I A

10 20 30 40 50 60 70 80 90

Then, we have the minimum of T

100

when

Fig. 3(a)-(c) presents the total amount of processing
and communication time as a function of the number of
target faults per server for four cases of different param-
eters. Fig 3(a) shows two cases of to = t I = 0.1 and ro =
t I = 0.01. From this figure we can see that as the com-
munication time decreases, both the optimal granularity
and the total processing time decrease. Fig. 3(b) com-
pares two cases of r2 = 0.00001 and 0.000001. From this
figure, we can observe that as the r2 decreases, the total
processing time decreases. This is because the factor r2 mN
which accounts for the decrease ratio of newly processed
faults due to overlapped processing decreases. From Fig.
3(c) which compares two cases of r I = 0.00001 and
0.000001, we can see that both the total processing time
and the optimal granularity decreases as the value of rI
decreases. This is because as the value of rI decreases,
the ratio of newly processed faults increases, and hence,
the effect of fault simulation increases.

The parallel test generation system has been imple-
mented on a network (ethernet) of eleven SUN worksta-
tions (one SUN3/60 for client and ten SUN3/50's for
servers) where the FAN algorithm [2] was used. Fig. 4
gives the curves of total processing time versus the num-
ber of target faults for the largest circuit c7552 of the
ISCAS'85 benchmark circuits [24] on the network. From
this figure, we can see that the shape of the curve coin-
cides closely with those of Fig. 3 obtained from the above
analysis under a homogeneous model.

4.2. Speedup of Multiple Processor Systems
The speedup of a multiple processor system is defined

as the ratio of the time required to complete test genera-
tion for all faults on a single processor to the time required
to execute the same process on an N-processor system.
Therefore, we have

Total Processing Time

M = 1ORXl
N = 100 "1 7 = I

0 lo= 1,=0.l

0 t0 = t]=0.01

20

889

0

890 IEEE TRANSACTIONS O N COMPUTER-AIDED DESIGN. VOL. 9. NO. 8. AUGUST 1990

Total Processing Time
(sec)

900

800

700

600

500

400

300

200

100

11111111111
0 100 200 300 400 51

Number of Target Faults

Fig. 4. Experimental result of IO-server system

Maximum Speedup
100

M=10000
90-

IO 20 30 40 50 60 70 80 90 x)

Number of Servers

Fig. 5 . Maximum speedup ratio versus number of servers

From (2 2) , (24), and (25), we have the maximum speedup Maximum Speedu?
S,,, as follows:

Tsingle
Sm,, = -

Tmin

v y o + r 1 2 / %

(26)

i’ , ’/
< N .

The above expression indicates that S,,, approaches to N
if

M + 1
r2mN << ro + rl 7

L

and
to + t , N << 7.

m
In other words, if the decrease ratio of newly processed
faults due to overlapped processing is much smaller than
the ratio of newly processed faults, and if the data transfer
time per fault and the waiting time per communication are
much smaller than the processing time per fault, then S,,,
approaches to N .

Fig. 5 shows the maximum speedup ratio as a function
of the number of servers for two cases of different param-
eters of to = t l = 0.1 and 0.01. The experimental result
on the network of fifteen SUN workstations (one SUN3/
60 for client and fourteen SUN3/50’s for servers) is shown
in Fig. 6. The figure gives the curve of the maximum
speedup ratio as a function of the number of servers for
the largest circuit c7552 of the ISCAS’85 benchmark cir-
cuits [24] on the network.

V. HOMOGENEOUS PROBLEM WITH DYNAMIC TASK
ALLOCATION

In the previous sections we have considered static task
allocation of faults where the number of target faults
transferred from the client to a server is always the same.

5

0 5 I O
Number of servers

Fig. 6. Experimental result of maximum speedup

In this section we shall consider dynamic task allocation
of faults where the number of target faults transferred from
the client to each server will vary as time goes on.

Here, we consider again the homogeneous case; i.e.,
r,, = r, and a,, = 6, for all faul ts i and serversj. Suppose
that the number of processed faults is i when faultf,,, is
processed where T (7r: 311. -+ 311.) is a permutation of 311.
= { 1, 2, - . . , M } . Let m, be the number of target faults
allocated to a server when i faults have been processed by
all servers till then. Then the total amount of processing
and communication time T can be obtained by replacing
in by m, in (17) as follows:

M

Partially differentiating the above expression by mi, we
have

dT (ro + r l i) ~ c
~ = (r 2 N r -
dmi N mf

89 1 FUJIWARA A N D INOUE: GRANULARITY OF TEST GENERATION IN A DISTRIBUTED SYSTEM

Then, we have the minimum of T for dynamic allocation:

Tdynamlc = c - (. / (r o + r , i) T + m)* (32)
1

i = ~ N

M

when

From (33), the optimal granularity (the optimal size of
target faults) of time c can be expressed as

(34)

where x , is the total number of faults processed by all
servers till the time t . Hence, the best performance or the
test generation with the minimum computation time will
be achieved if the dynamic task allocation is scheduled in
accordance with the above expression as follows: the
client counts up the total number x , of processed faults till
now (at time f) , calculates the number m (r) of target
faults from (34), and then allocates m (c) target faults to
an idle server. Note that although (34) represents a con-
tinuous function, m (r) is defined as an integer.

Let us consider next how much reduction of computa-
tion time will be achieved by dynamic task allocation
compared with static one. The minimum of T for static
allocation is

Hence, the difference between T,,,,,, and Tdynamlc is

Tstatic - Tdynamic

- 2- 5 -
N [= I

M + 1
* (J r o + rl ~ 2 - 6) > 0. (36)

This equation is always positive for M > 1, that is, the
dynamic task allocation is always more efficient than the
static one.

VI. CONCLUSIONS

In this paper, we have presented an approach to parallel
processing of test generation for logic circuits in a loosely-
coupled distributed network of general purpose com-
puters, and analyzed the effects of the allocation of target
faults to processors, the optimal granularity (grain size of
target faults), and the speedup ratio of the multiple pro-
cessor system to a single processor system.

For the homogeneous case such that all servers are uni-
form and for any fault i the probability that fault i is al-
located to serverj is equiprobable for all servers j , if the
test-pattern generation process is applied to each fault with

no fault simulation, the total processing and communi-
cation time T becomes a monotone decreasing function of
the number of target faults m, and hence, the best perfor-
mance is obtained when each server receives all target
faults only once from the client, i.e., when m = M / N .
However, it may often occur that a test-pattern generated
for one fault can also be a test-pattern for other faults if
one apply fault simulation. To analyze this case, we have
introduced a ratio of newly processed faults to target
faults, and derived the expressions of optimal granularity
in both cases of static and dynamic task allocation.

We have also derived an expression of the speedup of
a multiple processor system in the homogeneous case. The
analysis indicates that the speedup S,,, approaches N if
the data transfer time per fault and the waiting time per
communication are much smaller than the processing time
per fault, and if the decrease ratio of newly processed
faults due to overlapped processing is much smaller than
the ratio of newly processed faults. From this, we can see
that the task allocation which minimizes the factor of
overlapped processing in the ratio p will yield the best
performance for a multiple processor system, provided
that the parameters associated with the hardware are
given, though those parameters are hard to determine in
advance.

REFERENCES

P. Goel, “An implicit enumeration algorithm to generate tests for
combinational logic circuits,’’ IEEE Trans. Cotnpur., vol. C-30, pp.
215-222. Mar. 1981.
H. Fujiwara and T. Shimono. “On the acceleration of test pattern
generation algorithms.” IEEE Trcins. Compur., vol. C-32, pp. 1137-
1144, Dec. 1983.
M. H. Schulz and E. Auth, “Advanced automatic test pattern gen-
eration and redundancy identification techniques,” in Dig. Pupers.
FTCS-18, June 1988. pp. 30-35.
0. H. lbarra and S . K . Sahni. “Polynomially complete fault detection
problems.’’ IEEE Trans. C o t p u t . . vol. C-24. pp. 242-249, Mar.
1975.
H. Fujiwara and S. Toida, “The complexity of fault detection prob-
lems for combinational logic circuits,” IEEE Truns. Cornput., vol.
C-31, pp. 555-560. June 1982.
P. Goel, “Test generation costs analysis and projections.” in Proc.
17th Ann. Design Auromurion Coni.. 1980. pp. 77-84.
T . W. Williams and K . P. Parker, “Design for testability-A sur-
vey,” Proc. IEEE, vol. 71. pp. 98-112, Jan. 1983.
W. A . Rogers, J . F. Guzolek. and J. A. Abraham, “Concurrent hi-
erarchical fault simulation: A performance model and two optimiza-
tions,” IEEE Trun.5. Computer-Aided Desigti. vol. CAD-6, pp. 848-
862. Sept. 1987.
G. Pfister. ”The Yorktown simulation engine: Introduction.” in Proc.
Ann. 19th Design Autorriufioti Cotif., 1982, pp. 51-54.
T . Sasaki. N . Koike, K . Ohmori. and K . Tomita. “HAL: A block
level hardware logic simulator.“ in Proc. Ann 20th Drsigri Automu-
tion Conf.. 1983, pp. 150-156.
T. Blank, “A survey of hardware accelerators used in computer-aided
design.” IEEE Desigil u t i d Te.\t. pp. 21-39, Aug. 1984.
B. Milne, “Put the pedal to the metal with simulation accelerators.”
Elecrron. Design, pp. 39-52. Sept. 1987.
L . T. Smith and R . R. Rezac. “Methodology for and results from the
use of hardware logic simulation engine for fault simulation.” in Proc.
Inr. Test Coiif.. 1984. pp. 224-228.
F. Hirose, K. Takayama. and N . Kawato. “A method of generate
tests for combinational logic circuits using an ultra-high-speed logic
simulator,” in Proc. I t i t . Test Cotif.. 1988, pp. 102-107.
G. A. Kramer. “Employing massive parallelism in digital ATPG al-
gorithm,” in Proc. Inr. Test Corif.. 1983. pp. 108-1 14.

892 I E E E TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 8. AUGUST 1990

1161 Y . M. Elziq. H. H. Butt, and A. K. Bhatt, “An automatic test pattern
generation machine,” in Proc. IEEE Int. Con$ Computer-Aided De-

1171 P. A. Duba, R. K. Roy, J. A. Abraham, and W. A. Rogers, “Fault
simulation in a distributed environment,” in Proc. 25th Design Au-
tomation Conf., 1988, pp. 686-691.

[I81 A. Motohara, K. Nishimura, H. Fujiwara, and I. Shirakawa, “A par-
allel scheme for test-pattern generation,” in Proc. IEEE Int. Con$
Computer-Aided Design, Nov. 1986, pp. 156-159.

[I91 H. Fujiwara and A. Motohara, “Fast test pattern generation using a
multi-processor system,” Trans. IEICE, vol. E-71, pp. 441-447, Apr.
1988.

1201 S . J. Chandra and J . H. Patel, “Test generation in a parallel process-
ing environment.” in Proc. IEEE Inr. Con$ on Computer Design,
October 1988, pp. 11-14.

1211 S . Shimojo, H. Miyahara, and K. Takashima, “Process assignment
on multi-processor with communication contentions,” Trans. IECE,
(in Japanese) vol. J68-D, No. 5, pp. 1049-1056, Mar. 1988.

[22] Y-T. Wang and R. J. T . Morris, “Load sharing in distributed sys-
tems,” IEEE Trans. Comput., vol. C-34, pp. 204-217, Mar. 1985.

1231 Z . Cvetanovic, “The effects of problem partitioning, allocation, and
granularity on the performance of multiple-processor systems,” IEEE
Trans. Comput., vol. C-36, pp. 421-432, Apr. 1987.

(241 F. Brglez and H. Fujiwara, “A neutral netlist of ten combinational
benchmark circuits and a target translator in FORTRAN,” in Proc.
IEEE Inr. Symp. on Circuits and Systems, Kyoto, Japan, June 5-7,
1985.

1251 L. H. Goldstein, “Controllabilityiobservability analysis of digital
circuits,” IEEE Trans. Circuits Smt. . vol. CAS-26, pp. 685-693,
Sept. 1979.

[26] S . Patil and P. Banerjee, “Fault partitioning issues in an integrated
parallel test generation/fault simulation environment,” in Proc. bit.
Test Conf., 1989, pp. 718-726.

- sign, 1984, pp. 257-259.

Hideo Fujiwara (S’7O-M’74-SM’83-F’89) re-
ceived the B.E., M.E., and Ph.D. degrees in elec-
tronic engineering from Osaka University, Osaka,
Japan, in 1969, 1971, and 1974, respectively.

He is currently Professor in the Department of
Computer Science, Meiji University, Kawasaki,
Japan. In 1981 he was a Visiting Research Assis-
tant Professor at the University of Waterloo, and
in 1984 he was a Visiting Associate Professor at
McGill University, Canada. His research interests
include logic design, design for testability, test

pattern generation, fault simulation, built-in self-test, computational com-
plexity, parallel processing, and neural networks for design and test. He is
the author of Logic Testing and Design for Tesrabihy (MIT Press, 1985).

Dr Fujiwara is the Far East International Editor of IEEE Design and
Test of Computers. He is a member of the Institute of Electronics, Infor-
mation, and Communication Engineers of Japan and the Information Pro-
cessing Society of Japan He received the IECE Young Engineer Award in
1977.

*
Tomoo Inoue received the B.E. degree in elec-
tronics and communication engineenng from Meiji
University, Kawasaki, Japan, in 1988. He is cur-
rently working toward the M.S. degree at the De-
partment of Electncal Engineenng, Meiji Univer-
s1ty.

His research interests include hierarchical fault
simulation, parallel processing for test genera-
tion, and design for testability.

Mr. Inoue is a student member of the Institute
of Electronics, Information, and Communication

Engineers of Japan.

