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Three-Valued Neural Networks for
Test Generation

Hipeo FuJiwara
Meifi University, Japan

An approach to automatic last generation using neural networks was proposed by Chakradhar
et al. [1]. They farmulated the test generation problem as an optimization problem that can
be solved using Hopfield's binary neural networks, In this paper, we propose a three-valued
{0, 1, and {) neural network as an extension of Hopfield's binary model and show that the
185t generation problem can be solved more effectively by the three-valued model. In this
model, the energy function of the neural netwarks, the hyperplanes of neurons, and the
update rule of neuron are extended. It is proved that the proposed three-vaiued model always
converges. To escape from local minima, an extension of Boltzmann machines is prasented,
where the update rule is modified by introducing probabiliies of a neuron's states, Cutputs
ol neurons in the original Hopfield model take all continuous values between 0 and 1. In this
paper, the dynamics of neurons in the modified {binary and three-valued) Hopfleld models
is dizcussed in both discrete and continuous domains. Funthermore, a more general thrae-
valued model is introduced in which three arbitrary values Ve, V', and V* can be used as
a neuron's slale.

Bolzmann machine, neural networks, oplimization problem,
lest generation,  three-valued

1 INTRODUCTION

Neural networks have been used in many different fields. Although there are many
neural network models, Hopfield’s model [1, 2| is attractive because the compu-
tational power and its speed are demonstrated by solving one of the NP-complete
[4] problems known as the traveling salesman problem [2].

In the field of test generation, Chakradhar et al. [3] proposed an approach to
automatic test generation using neural networks. They formulated the test gen-
cration problem as an optimization problem that can be solved by Hopfield's binary
neural networks [1], where neurons assume binary values (0 or 1). Their approach
using neural networks is radically different from the conventional algorithms, such
as the D-algorithm [5], Podem [6], Fan [7], and Socrates [B]. Indeed, it is difficult
to put the approach using neural networks to practical use right away; however,
when large-scale neural networks become a reality with advances in technology,
this approach may provide an advantage over conventional methods,

The approach of Chakradhar et al. cannot be applied to sequential circuits due
to its binary model. To generate a test sequence for a sequential circuit, it is
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necessary to deal with three values, 0, 1, and X (don't care or unknown), since
the initial state of a sequential circuit is unknown in general. Therefore, in this
paper, we extend the ideas of Chakradhar et al. [3] and explore new possibilities
of solving computationally difficult problems on three-valued neural networks where
neurons assume values from the set {0, 1, {}. We propose a three-valued neural
network model that is an extension of Hopfield's binary model, and show that the
test generation problem can be solved by this model more effectively than by the
binary one. In the proposed model, the energy function of the neural network, the
hyperplanes of neurons, and the neuron update rule are extended. It is proved
that the proposed three-valued model always converges. To escape from local
minima, we present an extension of the Boltzmann machine where the update rule
is modified by introducing probabilities of a neuron’s states.

Qutputs of neurons in the original Hopfield model take all continuous values
between 0 and 1. In this paper, the dynamics of neurons in the modified (binary
and three-valued) Hopfield models is discussed in both the discrete and continuous
domains. We also introduce a more general three-valued model where neurons
assume three arbitrary values, V°, V', and V¥ (V? < V¥ < V!). These values,
Vo V' and V¥, correspond to the logic values 0, 1, and X, respectively. Both the
{0, %, 1) and (—1, 0. 1) models are special cases for this general (V°, V¥, V1)
model.

2 CHAKRADHAR'S APPROACH

First, we shall introduce briefly the approach of Chakradhar et al. [3] in this section.

2.1 Hopfield's Binary Model

A newral network is a collection of neurons interacting with each other. The behavior
of a neural network is determined completely by the specification of the interaction.
Let V, denote the state of neuron, i, V., € {0, 1} fori = 1,2,..., N, where N is
the number of neurons in the network. Let V(r) denote the state of neuron  at
time ¢, and let each neuron randomly update its state according to the following
equation:

Vit + 1) = sip (ﬁ:l Vi) + f,), (1)

where stp(x) is a unit step function, which is 1 for x = 0 and 0 for x < 0; T, is the
weight associated with the link between neurons § and j; and [, is the threshold of
neuron i. Hopfield [1] has shown that if T; = T, and T; = 0for all i and j, neurons
always change their states in such a manner that they lead to stable states that do
not change again with time and that they locally minimize an energy function defined
by

N

N N
YTV - IV + K (2)
i=1 =1 i

=1

E = —

b | =

where K is a constant.
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2.2 Neural Networks for Logic Circuits

An arbitrary logic circuit can be represented by a neural network [3]. Every net
(signal line) in the circuit is represented by a neuron, and the value on the net is
the state value (0 or 1) of the neuron. Neural networks for two-input AND, OR,
NAND, NOR, XOR, and XNOR gates and the NOT gate constitute the basis set,
and gates with more than two inputs are constructed from this basis set. A logic
circuit is realized by specifying the matrix T = [T,] and vector I = [I;] for the
neural network. T and [ are determined so that energy E [Equation (2)] has global
minima only at the neuron states consistent with the function of all gates in the
circuit. All other inconsistent states have higher energy. In other words, the energy
E is a nonnegative constant Z for all consistent states and E = Z for all inconsistent
states

Definition 1

Associated with cach neuron i is a hyperplane
2TV, + =10

Ji
in an n — 1-dimensional space. Associated with each neuron i are three sets, P,
P; @, and P, ... whose elements are vectors corresponding to consistent states
of the network. A vector belongs to P, (P; ) if it corresponds only to one
consistent state and neuron f has a state value 1 (0). P,_... consists of all vectors
corresponding to consistent states that are not in set P, ,, or P, .

Definition 2

A hyperplane
2TV, +L=0

i I
Ty
associated with neuron i is a decision hyperplane if the vectors in P,_, and P,_
fall on opposite sides of the hyperplane and all vectors in P_., lie on the hyper-
plane.

Theorem 1 [3]

A necessary condition for the existence of a neural network of n neurons for a
device with n terminals [with the energy function E defined in Equation (2)] is the
existence of a decision hyperplane for each of the n neurons.

Example 1. Figure 1 shows a two-input NAND gate and the corresponding neural
network. Associated with neuron 1 in the NAND gate are the sets P,_, = {[V. = 1, V,
=00 Pos = (V. =1, Vs = 1)}, and Pi_her = 1(Vs = 0, V5 = 1)}, Associated with
neuron 3 are the sets Py, = {(V, = 0, V¥V, = 0, (V, = 1, ¥, = 0}, (V, = 0, ¥V, = 1]},
Pow={Vi=1V,=1}}, and Py oy, = { }.
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Figore 1. Two-input NAND and corresponding newral network.,

From Theorem 1, the existence of a decision hyperplane for neuron 1 implies that
T+, >0,Ty+ T+ [,<0, and T,y + I, = 0. Similarly, a decision hyperplane
for neuron 2 implies that T, + L >0, Ty, + Tu + L <0, and T3y + 1, = 0. The
decision hyperplane for neuron 3 implies that [, = 0, Ty + /y, = 0, Toy + [, = 0, and
T, + Ty + I = 0. Furthermore, the energy function E should be zero at all four
consistent states (V, = Vo = 0, Vi = 1L (V, =0, V. =V, = 1), (¥, =V, =1, V,
= ), and (V, = V, = 1 V¥, = 0). Therefore, the neural network model for the NAND
gate should also satisfy the following conditions: K = T, > 0, [, > L, = 0,1, > I, > 0,
T, <0, T, <0, Tu<0,T,+ 1, =0,Tu+5L=0and T, + I, + L, =L One
solution that satisfies all the preceding conditionsis [, = I, = 2, [, =3, T\, = =1, and
Ty=Ta=—2

2.3 Test Generation Problem Formulation

Figure 2 illustrates a network that specifies constraints for test generation. This
network is constructed by joining the good circuit and a faulty circuit so that the
two circuits share the same primary inputs. Their primary outputs are connected
through an ourput interface to include the constraint that a least one of the primary
outputs of the faulty circuit will differ from the corresponding good circuit output.
The neural network corresponding to this constraint network (the good cireuit, the
faulty circuit, and the output interface) is used for generating a test vector for the
fault. If a test exists for a fault, there is a consistent labeling of the neurons in the
neural network with values from the set {0, 1} that does not violate the function
of any gate. In this way, the test generation problem can be formulated as an
optimization problem such that the desired optima in the constraint neural network
are the test vectors for a given fault.
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Figure 2. Constraint newtork for test generation,
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First, a local minimum of E is obtained using a gradient descent approach,
where each neuron updates randomly according to the update rule of Equation
{(1). Although Hopfield’s network always converges on the local minima of E,
convergence to a global minimum is not guaranteed [1]. Hence, to escape from
local minima, the wpdate rule is modified by using a probabilistic hill climbing
technique [9, 10]. If the energy gap between the () and 1 states of the kth neuron
is AE,, then the state value of the neuron is set to 1 with probability

1
R 3)

3 THREE-VALUED NEURAL NETWORKS

As mentioned in the previous section, the problem of test generation is to find a
consistent labeling of the neurons in the constraint neural network, with values
from the set {0, 1}, that does not violate the function of any gate. However, searching
with binary values involves a lot of wasteful assignments. For example, suppose
that we have to set the value 0 on the output of an AND gate in Figure 3. If we
allow signals to assume only values from 0 or 1, we have to select one assignment
from three possible input combinations: 00, 01, or 10, Conversely, if signals can
assume values from the set {0, 1, X}, where X denotes don't care, we have to select
one assignment from two possible input combinations: 0.X or X0. This reduces the
search space as shown in Figure 3(a).

In Chakradhar’s approach, using the binary model, every neuron is initialized
to either 0 or 1. So, it often happens that many unnecessary values are assigned
to neurons. In three-valued neural networks, neurons can be initialized to a 0, 1,
or A (1),

AND

i) Binary model
Figure 3. Comparison of three-valued and binary models.
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The purpose of allowing neurons to assume a third value (1) is to avoid un-
necessary assignment of () or 1 to signals (pruning the search space), to obtain
necessary and sufficient signal values to detect a given fault (minimal test vectors),
and to speed up the convergence to a global minimum.

Another important reason why a third value is needed. is to deal with test
generation for sequential circuits. The approach of Chakradhar et al. cannot be
applied to sequential circuits due to its binary model. To generate a test sequence
tor a sequential circuit, it is necessary to deal with the three values 0, 1, and X
(don't care or unknown), since the initial state of a sequential circuit is unknown
in general.

3.1 Energy Function and Hyperplanes for Three-Valued Model

The energy function for three-valued neural networks is of the following form:

N
ST E Z T‘F_IVIV E I.I'P:

1—1 F=1

- 2 2 WV - VIV - V) + K (@)

where W, is another weight associated with the link between neurons { and j. The

state values of the neurons are 0, 1, and 3. We assume T; = T,, W, = W, and
T, = W; = 0. The third term is introduced to stabilize neurons under the value
of &,

Following Chakradhar’s method, we can represent-an arbitrary logic circuit by
using a neural network. Every net in the circuit is represented by a neuron, and
the value on the net is the state value (0, 1, or }) of the neuron. Neural nr:lwuris;a.
for 2-input AND, OR, NAND, NOR, XOR, and XNOR gates and a NOT gate
constitute the basis set, and gates with more than two inputs are constructed from
this basis set. A logic circuit is realized by specifying the matrices of weights T =
[T,] and W = [W,] and vector | = [[]]. T, W, and [ are determined so that the
energy £ of Equation (4) has global minima only at the neuron states consistent
with the function (with respect to three values) of all gates in the circuit. All other
inconsistent states have higher energy. In other words, the energy E is a nonnegative
constant Z for all consistent states and E > Z for all inconsistent states.

Definition 3

Associated with each neuron ¢ are three hyperplanes:
L. Eyiay — By = E LV, + I, =0

F#i

(E V+I+EW” ,(1—1«’})

=i

0

2. Ew_._u} T E['Ir",-i".!]-

b3 |

I
=

; :
3. -Ew,—l-‘z} - EW.--'] i E(z if .I' T Z wr_l .l 7l'I) bt

F*i
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inann — 1-dimensional space. Associated with each neuron 7 are nine sets, Py,
Pio<1ys Piw=1y» Piw=12)» Pigprzys Pio=112)s Piva=1ys Pigia<y» and Py, whose
elements are n — 1-dimensional vectors corresponding to consistent states of the
network. A vector belongs to Pi,sy (Pia<s) if it corresponds to a consistent state
when V. = b (V, = a) and an inconsistent state when V; = a (V, = b). A vector
belongs to P,,.p, if it corresponds to a consistent state both when V; = a and V;
= b,

Definition 4

A hyperplane
> TV + 1

7 ¥
associated with neuron i is a (0, 1)-decision hyperplane if the vectors in Fyp.,, and
P, g1, fall on opposite sides of the hyperplane and all vectors in Py, -y, lie on the
hyperplane.
A hyperplane

EIIJ:+I+2 iIJ' '_VJ}=

associated with neuron i is a (0, {)-decision hyperplane if the vectors in Py, and
Py Tall on opposite sides of the hyperplane and all vectors in F,_ ., lie on
the hyperplane.
A hyperplane

2:;, LV + 1, - E WiVl - V) = 0

Fi i
associated with neuron i is a (4, 1)-decision hyperplane if the vectors in Pz, and
P, 12y, fall on opposite sides of the hyperplane and all vectors in Py 4, lie on
the hyperplane.

Theorem 2

A necessary condition for the existence of a three-valued neural network of n
neurons for a device with n terminals [with the energy function E defined in
Equation (4)] is the existence of three decision hyperplanes for each of the n
neurons,

Proaf. The difference between the global energy of the network when neuron i has
the state value o and when neurcn i has the state value 3, given the curreni states of the
other neurons, is Ey ., — Ej.pm = AE,, g, where o and B are 0, 1, or ¢ These are:

E['I.-'.—JI] = -Eq’l..-'l-l.] e lﬁ-Ejl:l-l = E TI:-'V.' + I"
FEd

Ewen = Envaimy = AEy_1p = (E WV, + 1+ E WV F-:I)

P&

Ew,-1m = By = 8Epp_a = (E IV, + I - E W-;V.r":l B Vr})'
di

It
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For an arbitrary vector p € Pjpy (Fijaeny), neuron § assumes the value B (a) in the
consistent state §, and « () in the inconsistent state §,. The energy function £ should
have lower values of energy for the consistent state §, as compared to the inconsistent
state §,. Therefore, AE_ _, should necessarily be positive (negative). The hyperplane
divides the n — 1-dimensional space into two regions, K1 and R2, and lets vector p lie
in the region R1 (R2). Therefore, for E to exist, all vectors in Py .p, (Fijaeg) must lie
in region R1 (R2). For an arbitrary vector p € P, _,., there correspond two consistent
states 5, and &, with neuron ¢ having state values o and B. respectively. Since E should
dttain its minimum value, Z in both states, it is mandatory that AE,, _, be zero. Hence,
p must lie on the hyperplane. Hence, for any given unit i, the existence of an {w, B)-
decision hyperplane is a necessary condition for the existence of E. Q.E.D.

Example 2. Consider the two-input NAND gate and its neural network shown in
Figure 1. Associated with neuron 1 are nine sets:

Pioony = (V2 = 1, V3 = 0),(V; = 4, ¥; = })}
Pupocyy = (Vo= 1, Vo = 1), (Vo = 1, ¥, = 1)}
Pyo-py = {(V2=0,V, = 1)}
Puomm = (V2 = 1L Vo = 8 (V, = L, V, = 3}
Puocry = {(Va = 1, V, = 1), (V, = L, ¥, = 1)}
s N = =~ T
Prneyy = (V2 = 1, V4 = 0)}
Py ={(Va =1, V; = §)} and
Piaa=yy = (V2 = 0, Vy = 1), (V2 = }, ¥, = B},

From Theorem 2, the existence of three decision hyperplanes for each neuron is necessary
for the existence of a three-value neural network for the NAND gate. Let us derive the
conditions of those decision hyperplanes. From the three sets P, _,,, Py, and Py,
the existence of a (0, 1)-decision hyperplane for newron 1 implies that

T+ 6L =0

Ty + T+ 1, =0
T+ T+ 1L,<0
T+ T+ I, <0 and
Ta+ I =0

Similarly, from the three sets Py Procvns and Pyg_ oy, the existence of . (0,.4)-
decision hyperplanes for neuron 1 implies that

T+ T+ 5+ IW,=10

T + T + 0+ HAWL + W=0
Tu+ T+ L<D

W+ T+ + W, <0 and
Ts+ 1, =0



MNeural Metworks for Test Generation 281

From the three sets Pyyaoyy. Pyyaey. a0d Py oy, the existence of (4, 1)-decision hy-
perplanes for newron 1 implies that

T+ 5L =0

T+, + 1 - W,<0

T+ 14, =0 and

T + T) + 1 — (Wy + W) = 0.

Associated with neuron 3 in the NAND gate are nine sets:

Pyosy = {(V: =0,V = 0),(V, = 1, V, =0), (V, =0, ¥, = 1),
Vi=LW¥,=0,(,=01V=1§
Pyoery = {(V, = L V; = 1)}
Py =1}
Popermy = {(V; =4, ¥, = )}
Pyociyy = {(Vy = 1, V; = 1)}
Pygermy =1 }

Pyyy = (Vi =0,V =0),(V, = L, ¥V, =0),(V, =0, V; = 1),
(Vi=4LV,=0,(V, =0V, =)}

Pyraen = {(Vy =4, V; = §)}

Pyyp-yy = { L
Similarly, from the three sets Py, . Py, and Py, the existence of a (0, 1)-decision
hyperplane for neuron 3 implies that

L>=0

Tat+h=0

T +4L=0

T+ L>0

T, + I, >0 and

T+ T+ L=0

From the three sets Py, Pyooyay, and Py, oy, the existence of (0, &-decision hyper-
planes for neuron 3 implies that

Ty + To) + 1 + (W, + W) >0 and
Ta+ T+ L=10,

From the three sets P:n,:-.jj, P![l_.!-.;j:., and Pﬂcl.‘}—n: the existence of {i, li-dﬂﬂiﬂﬂﬂ h}'-
perplanes for neuron 3 implies that
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IL=0

Tu+ L=>0

Ty + ;=0

T, + L,=0

i, + I, =0 and

Ty + To) + I, — (W5 + W) <0

Furthermore, the energy function E should be zero at all nine consistent states (V, =
V=0V, = LV, =0,V = v, =1), (V; =V,=1V¥,=0),(V, =V,=1V,
= O (¥, =l Vo= Mo 1 V5 = L ¥, w0, = ), (V, =L Va= b V=1,
(V, =1, V, =4V, =1, and(V, = i, V. = 1, V; = §. Therefore,

K-I,=0

K~ To-E+E=0

B =ik iy=1=0

=Tl Ry

K-, -({+L)=0

K-, —(+1)=0

K =T, + Tu+Te)— UL + L+ 1) - MW, + W, + W) =10
K- (4T, + W + 4T) — U + 4 + ) — Wy, = 0 and
E-(Q@Tp+Wa+Wp) - +5+ ) W, = 0.

Summarizing the preceding equalities and inequalities, we have

K=I1,>=0
L=5L=0
L=L=0
T.<0

Ta=10

Tu<0
Tw+L=0
Tao+ L =0
T+ L +tLh=14
W, = 2T

W, = —2T,; and
W, = —2T5.

Under these conditions, let us compute the energy for all inconsistent states.
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E(V, Vo, V.= E(0,0,0) =K=14>0

R

E(0, 1, 0)
E(1,0,0) =K -1, =I1,-1,>0

EL1L,)=K — (T + T+ Ta)-(L+ L+ L)= =T,>0
EfQ,x,0)=K-4¥>=0

Ex,0,0) =K -¥,>0

L4 =0

E(0,5,2) = K - {Tu — ¥l + L)) — iWy =0

E(x,0,x) = K = iT\s = ¥, = 1) = iW;3 =0

E(x.2.00 = K = iT; - I, + L) — W, = 4, >0

E(x,x,1) = K = (iT; + T, + iT)) = (U, + i, + L) = iW; > 0
E(1l,x,0) = K =T, - (I, + L) > 0

ElL2, )= K- (T, + T+ W)~ L+, +5)=-T,>0
E(x,1,0) = K - 4T, - (1, + 1) =0

E(x,1,1) = K = (T, + T3 + To) = &, + L, + 1) > 0.

As seen from these computations, the energy E is positive for any inconsistent state.
One solution that satisfies the preceding equalities and inequalities is that [, = [,
= 2- I_'q = 3. Tu = = 1., T|3 — Tz} = _2-. wll = _2'. and WI.J = w}! e 4'

3.2 Neuron Update Rule

The state of an individual neuron i is updated as follows. Let V; denote the state
of neuron i, i.e., V., € {0, 1,4} fori = 1,2, ..., N, where N is the number of
neurons in the network. Let V(1) denote the state of neuron § at moment r, and
each neuron updates randomly in time its state according to the following rule:
State Update Rule

In the case of 8,(r) = 0,

Vit + 1)

]
-

. U) = 8,0
800 < U < 8,(0) 5)

—0, i U = —0,0).
In the case of 8,(r) = 0,

Ve + 1)

1, if U) >0
=0, if U <0 (6)

V., otherwise,
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where

Uy = X T,V + I, and 0,(1) = 2 W, V(01 = Vi(1)). (7)

J*=i ki

Theorem 3

The energy minimization algorithm based on the update rules (3)-(7) converges
on stable states provided that T, = T,, W, = W, and T}; = 0.
Progf. This can be proved by showing that the energy function E of Equation (4) is
always decreased by any state change produced by the algorithm based on the update
rules (5)—(7). From Equation (4), the energy function E is

2 EL T,V.V, Z W= 3 3 WVl - VoVl - V) + K. (8)

=] f=1

!‘\-'Hl—l

The difference between the global energy of the network when neuron i has the
state value o and when neuron { has the state value B, given the current states of the
other newrons, is E ooy — Ejv,- = AE,, 5, where o and B are 0, 1, or 1 These are:

Ewven — E,=ny = 8Ey_, = 2 wv,.+1§L=1U )]

FET

E.;vl-m oy -Eﬂ-'.-l..':} o llﬁ-Eu'tl—]'z

5 %(2 LV, « L+ LWV - 1’,-}) = %I{U, +8,) (10)

I jwi

ErV.-l-!: o E(V,—n = AEjm_y

4 %(E TV, + I, - 2 W, v,( - V}) %{U =8} (11)
F+t

F*i

Let us first consider the case of 8, = 0. If U, = ¢, then Ey. ., — Ejyyoyy = AE; = 0
and Egy — 1z — Eppeoyy = = AE... , = 0. According to update rule (6), neuron i takes the
state value 1 only when U, = 6, and hence this state change decreases the energy. If
-8, < U, < 9, then E.:r-tl:n T Euu_ur = 4B, 1 = 0 and E[V-l-"} = Boan ™
AE,: , = 0. Similarly, accurdlng to update rule (5), neuron { mkes the state valuei
only when —6, < U, < 8,, and hence the energy is decreased. If U, = -8, then E,
— Ey,eyy = 8B < 0and Ey gy — Epy -1y = AE,;_y; = 0. From update rule (3),
neuron i takes the state value 0 only when U = —#f,, and henee the energy is decreased.
Next, consider the case of 8, = 0. If U, = 0, then £, .oy — Ey -y &E, = 0.
Since U, > 0 =8, Ey _1ny = Ey,-yy = AE; 3, = 0. According to update rule (a),
newron i changes the state value to 1 only when U, = @, and hence the energy is decreased.
If U, <0, then E;y _o— Epmyy = AE, , < 0. Furthermore, U, < 0= -8, ie., Ey
- Eymy = .-iEJL. e = 0, According to update rule (&), neuron § changes the state
value to 0 only when U, < 8, and hence the :ncrgy is decreased. If U, = 0, then E;. _,
-~ Ey iy = AEy_, = 0. Furthermore, U, = 0 2 §,, ie., Ejy,_1 — Epyoyy =
AE o> 0. U, =0= -8, ie., Eyan — Ew =iy = .'flE,,-, 142 < 0. Therefore, En =t

= E,-1y < Ey, .z According to update rule (6), neuron i retains its state value.
Q.E.D.
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3.3 Three-Valued Boltzmann Machines

In the previous section, we describe the gradient descent method. However, for
some problems, this method converges to a local minimum. To escape from local
minima, we modify the update rule in the same way as a probalilistic hill climbing
technique [5. 6] by extending activation probabilities for neurons. This is based on
the idea that if jumps to higher energy states occasionally occur, it is possible to
break out of local minima. Such a model is called the Boltzmann machine. Here,
we shall extend the binary Boltzmann machine to a three-valued model.

For three-valued neural networks, we must consider three energy gaps between
0and 1, 0 and %, and ¢ and 1. These energy gaps are, respectively,

Ev-0 = Ew,-y = 2 TyV; + I (12)

i

1
Ev,=0) = Ev,c1m) = E(Z TyVy + L + 3 WVi{1 - Vf}) (13)

Ji Fei
1
E[VI-I'"]] R E(vl=” = 'E (IZ“ ?-”Vlr + ";.I' — fgj WFJ'VJ-{I e V}}). [1‘4]

As the state probability of Equation (3) was derived from the update rule of
Equation (1), so we can define the probabilities that neuron i takes each state
value, 0, 1, or 4, from the update rule of Equations (5) and (). These state
probabilities are as follows:

In the case of 8, = 0,

1
P = Pw=1 = 7T —(W-opar (15)

1
P = Pv,=0y = 1 — ———pmr (16)

I 1
Paz = Pw=1y = 1 = (Pn + Pu) = 1 + g Hv0)2T ~ 1 1 o—(U,-0)aT" (17

In the case of 6, = 0,

1
Pin = Piv-1 = 1 + e-UiT (18)
1
P =Pwv=y=1—Pn~— 1 + e-UiT" (19)

where T is a parameter that acts like the temperature of a physical system. These
probabilities are illustrated in Figures 4 and 5.

4 DISCRETE VERSUS CONTINUOUS MODELS

The neural network models we have considered so far have used a stochastic
algorithm involving sudden changes of a neuron’s states among 0, 1. and ! at random
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Figure 4. State probabilities when 8, = 0.

]

Figure 5. State probabilities when 8, = 0.

time. However, since real neurons have continuous input/output relations, we need
to analyze the neural networks in continuous space as well as in discrete space. In
this section, we shall describe briefly an extension of the three-valued Hopfield
machines with discrete input/output relations into those with continuous input/
output relations.

In the discrete binary Hopfield model. every neuron assumes only O or 1 values.
Neuron i receives inputs TV, from every other neuron j and a bias input [,. The
net input to a neuron is as follows:

i) = E‘ T, Vit) + 1. (20)

L)

Each neuron randomly updates its state according to the following equation:

Vit + 1) = sip (2& T, V(1) + L). {21)

where sip(x) is a unit step function that is 1 for x = 0 and 0 for x < (0.
In the continuous Hopfield model, neurons change their state according to the
following equations of dynamics [1]:
dl;

N
RPN i
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1
Vi=gll) = 1+ e 0 (23)

where | is time, and g{x) is sigmoid that approaches a unit step function sip(x) as
T tends to zero.

Similarly, we can derive the continuous Hopfield model based on the three-
state model from state probability functions Equations (15)-(19) of the three-
valued Boltzmann machine,

Let us compute the average value of the state of neuron i from Equations (15)-
(19). In the case of &, = 0, we have

1
V; leu"‘ExPu;:"'ﬂme

(24)
- 1 ]
T a1 4 e-iUire)aT + 1 + e—(H—ep2r "
Similarly, in the case of 8, = (), we have
Vi=1xp, +0Xpy (25)

e TANEe
1+ e 0t

The state of each neuron i is determined by Equations (24) and (25), which
approach Equations (5) and (6), respectively, as T tends to zero.

5 GENERAL (V*, ¥v*, V') MODEL

S0 far, we have considered a three-valued model where neurons assume a value
of 0, 4, or 1. However, we can consider another three-valued model where neurons
assume a value of =1, 0, or 1. In this section, we introduce briefly a more general
three-valued neural network model that includes these two models as special cases.

Let V°, V¥ and V! be the state values of neurons that correspond to the logic
values 0, X, and 1, respectively. Note that the three values V°, V¥, and V! satisfving
V0 < V¥ < V! are chosen arbitrarily. This three-valued model is called the (VO°,
V¥ V1Y) model,

We can define the energy function for a three-valued neural network of the
(V°, V¥ V') model in the following:

E=—3S STV, -2,
i i i
= 22 WyVP = VNVE = V)V) - V)(V] - V) + K. (26)

In the same way as Section 3.1, associated with each neuron ¢ are the following
three hyperplanes:

%

Ev-vy — Ey-vy = (E i R I,) (VP —¥) =0 (27)
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Ey vy — Eqpoyx) = (‘%_: IV, + f,) (V¥ - ¥v")
J
-2 (Z_ MRV = i ~ v}}) (V¥ — VOV = V¥) =0 (28)

Ey,-vxy — By vy = (E TV + ff) Mo sot &

PEI
+ 2 (2 WAV® — V)(V! - vj)) (V¥ - VOV = V¥) = 0. (29)

Using the preceding energy function and three hyperplanes, we can represent an
arbitrary logic circuit by a three-valued neural network of the (V°, V¥, ¥!) model
in the same way as the (0, , 1) model. Since this is straightforward, we shall omit
here the detailed discussion.

Next, let us consider the (0, {, 1) model as a special case of the (V°, V¥, V')
model. By substituting 0, ¢, and 1 for ¥", V¥, and V!, respectively, in Equations
(26)—(29), we have

E = —%2 ZTVV, - 2LV - T X WVl - V)Vl - V) + K (30)
i ¥ i I

i

Ew,-op = Eyvayy = Eaj TaVi+ 4, =0 (31)
1
iy ot S E(g TV, + I+ 3 WVl — v;;) -0 (22
F-i R
1
Ew,—l.-:t] R E(,Z:: LV, + 5L~ Z W,V - Vr.}) =0 (33)
] it ]

Equation (30) coincides with (4) of the energy function of the (0, i, 1) model.
Equations (31), (32), and (33) coincide with those of Definition 3, which are
hyperplanes for the (0, , 1) model.

Similarly. let us consider the (=1, 0, 1) model as a special case of the (V",
V¥, V') model. By substituting — 1, 0, and 1, respectively for ¥V, V¥, and V' in
Equations (26)-(29), we have

E=>3 3T,V - S,
(e !

—$§%u+mu—mu+mu—m+x(m

Eqe-ny = Bven) = Z(E T;V; + ."‘) =0 (33)

Fei

Evieoy = Eproy = Z TV, + L+ S W+ V)1 -V)=0 (36)

Fi Fi
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Ev-o = Eyny =2 TV, + I, - E W1+ V)1-V)=0. (37

TE.T] FE
Equation {34) is the energy function of a three-valued neural network for the (-1,
0, 1) model. Equations (35), (36), and (37) are three hyperplanes for the (=1, 0,
1) model.

6 CONCLUSIONS

This paper proposed a three-valued (0, 1, and 4 neural network that is an extension
of the binary Hopfield's model and showed that the test generation problem can
be solved by the three-valued model more effectively than by the binary one. In
the three-valued model. the concepts of energy function, hyperplanes of neurons,
and update rules of a neuron’s states were extended naturally. It was proved that
the proposed three-valued model converges to local minima as Hopfield's model
does. To escape from local minima, an extension of the Boltzmann machines was
presented, where the update rules were modified by introducing state probabilities
that are functions of a temperature.

We have also introduced a more general three-valued model where neurons
assume three arbitrary values of V°, V', and V¥ (V7 < V¥ < V1), These values,
VO V', and V¥, correspond to the logic values 0, 1, and X, respectively. OQutputs
of neurons in the original Hopfield model take all continuous values between 0
and 1. We have discussed the dynamics of neurons in both the discrete and con-
tinuous domains.
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