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Abstract

Local automata are difined as labeled systems that interact and accept or reject each other.
The input to a local automaton is a labeled directed graph and thus local automata are
generalizations of ordinary automata. The aim of this paper & to show a procedure for finding a

minimum state nondeterministic finite local automaton equivalent to a given finite local automaton.

1. Introduction

Gabrielian [1]has introduced a kind of automata that have nonsequential inputs
in the form of arbitrary labeled directed graphs, called “local automata™. Loeal
automata are defined as labeled systems that interact and aceept or reject each other.
This is an interesting generalization because these automara may be interprered as
machines which accept labeled directed graphs as input.

In this paper we consider minimization problem for finding a minimum state
nondeterministic finite local awtomaton (NDLA) equivalent to a given local automaton.
We also define a class of local automata whose characteristic transition functions are
deterministic, and then show that there is a reduced characteristically deterministic
finite local automaton (CDLA) which uniquely exists for any CDLA,

Given a nondeterministic finite automaton (NDA), we can find a deterministic
finite automaton (DA) which is equivalent to it, e.g., using the subset construction.
Similarly, we can find a CDLA equivalent to a given NDLA using the modified subser
construction. Once an equivalent CDLA is constructed, we can obtain a reduced CDLA
equivalent to the given NDLA. Therefore with an NDLA we can uniquely associate a
reduced CDLA equivalent to it. Thus our problem can be reduced to finding a
minimum state NDLA equivalent to a given reduced CDLA,

2. Preliminary Definitions

We first give some definitions in the following,
Definition 1. A nondeterministic {finite) local automaton (NDLA) A is a system
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A=(E,5 M5 F,7.K)
where I is the input alphabet, S is the finite nonempty set of states, M: Sx Z + 25 is
the transition function, Sy (F @) € S is the sct of initial states, F € § is the set of
final states, ¥: S -+ K is the label function, and K is the finite set of labels.

Definition 2. An “interaction” between two NDLA A = (I, 5§, M, 5. F, 71, K)
and B = (K, T, N, Ty, G, A, Z) is the following process: Let Py = { (s, t) | sES,,
tETy | be the initial pair set. If the pair set at stage i is P; the next pair set is Pjyq =
(s 1) ISEM (s, A (), tEN (', 7 (s)), (5, ) EP; }.

We say that the interaction “halts” and A “accepts” B if ;,NF x T # ¢ for
some i.

Definition 3. Given an NDLA A = (8, M, 54, F, 7), the characteristic transition
function M of A is defined as follows:
M Sx(KZK\*> P where K=KU |e}.
For WES, ¥l and VI €K, Yo EX and ¥x € (K L K)*,
M(S,A) =5,
M(s, lol') = {s' IS’ EM(s, ), 1E{¥(s), €}, I'E {7(s"), €} ] .
M (s, xlol') = a,zum g M(s", lol').

It is convenient to extend the domain of M to 2° x (K £ K)* by M (R, x) =
M (s, x) for cach R €2% and x€ (K E K)*.

Definition 4. We define bh* (A} and bh™(A4) such that bh* (4) = { x€ (K Z K)*
KEZeeZeUeZeU{A) | M(So, x)NF#$), bh14)={xE(KIK)* |M(So, x)# @}, and bh{d)=
| xE(KEK)* | M(Sq, x)NFs |,

A local automaton has both the behavior of accepting or rejecting other local
automata and the behavior of being accepted or rejected by other local automata. The
former is bh* (4) and thc latter is bh™{A).

Definition 5. A and A' are equivalent iff* bh* (A) = bh* (A') and bh™ {4} = bh~

L.l

(A').
Lemma 1: A and A’ are equivalent iff bh (A) = bh (4") and bh™(A4) = bh™(A").
Proof: To prove the sufficiency we have only to show that Yeth (A" for
every '.I:E'bh"'l:.z‘l},
1) 1f x=A, then AEbh*(A") implies M(Sy, A)NF#¢, M(So, A)NF¢ < bh(A)=bh(4")
© M'(Sp, A)NF'#p » ASbh* (A",
2)  If x€ele, ie., x=eve for some 0EX, then xEbh' (A) implies nh'l{Sﬂ,. x)MF#p. This
implies M(Sg, 0)"F#¢ implies M(s, 0)Es for some $5, and some s'EF, Hence HI';‘![S“,
¥(s)oy(s'))F#¢, and this implies ¥(s)oy(s’) = yEbh(4) = bh(A") implies M'(So ", yINE'#¢

# “iff” denotes “if and only if",
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implies M'(So’, 0)NF'#$. Hence M'(So’, €0€)NF'#4, and then this implies xEbh™ (4”).
3)  If xE(KEK)* KZeeZe, we can show that xEbh*(A') similarly.

To prove the necessity, it is sufficient to show that bh*(A)#bh*(A") or
bh1A4)#bhTA') if bh(A)¥bh(A"). If bh{A)#bh(A'), then there exists xS(KZK)* such
that xEbh{A) and xEbh(A").

1) If x=A, then AEbh(A') implies AEbh'(A") and Agbh'(A), hence bh®(A)#
bh'({4").

2) If x€KZK, then x=lol'Ebh(4) implies ese€bh’(4) and loI'EbhTA), and
lol'Ebh(A’') implies eoeEbh*(A'), or ececbh®(A") and loI'Ebh1A"). Since eveSbh™(A),
eoe@bh’ (A') implies bh* (A)#bh*(A’). Since loI'Ebh™(4), eoecbh” (A') and lol'Ebh™ (A")
imply BhTA)#bhTA"). Hence xEbh(4) and x@bh(4) imply bh'(4)#bh*(4’) or
bh (A)#bh(A").

3) If xS(KZK)* KEKKZK, then we can similarly show that bh*(A)#bh*(A’) or
bh1A)#bh(4").

3. Homomorphism of COLA

Definition 6. A local automaton is a “‘characteristically deterministic” local
automaton (CDLA) if 7{soi)#7(soj) for i#j, Wspj and WspjES,, and IM(s, 1) |S1 for
YUEK XK and VsES.

Definition 7. Let A=(S, M, S, F, 7) and B=(T, N, Ty, G, A) be CDLA's. y: §=>T
is a homomorphism of A onte B iff

1) ¥(Sg) = T,

2) W(M(s, 1)) = N(W(s), &) for YREKEK and VsES,

3) «€F & (s)EG,

4) 7(s) = M(s)).

Definition 8. Given a CDLA A=(5, M, S, F, 7), two states of A, 5 and sj, are
said to be weakly equivalent, written s;~sj, iff SCa (5i)=5Ca(sj), where SCa(s), where
SC,4 (s)={xE(KEK)* | M(s, x)EF}.

Definition 9. Let A=(S, M, 5, F, 7) be a CDLA. The quotient A/~ of A is
defined as a 5-tuple A=(8, M, Sy, F, 7) such that §=8/n=([s] | aES} where [5] is the
cqumlmm class of the states of A containing s, M{[:] p)=[s"] iff Ml[s. u)=s', §o=1{[s]
158}, F={[s] | $EF}, and ¥([s])=¥(s) for VREKZIK, Vs, and vs'ES.

Theorem 1: The quotient CDLA A/~ constructed above is a homomorphic image
of any CDLA B which is weakly equivalent to A.

Proof: Let Ajn=A=(S, M, So, F, ¥), B=(T, N, To, G, A). Define ¥: TS such
that i) for each tyETy with some Eu]ESM l,lf[tg..}zs.u.j iff A(to;)="{3;), and ii) for each
tET-T, with some €8, W(t)=i iff N(T,, )=t and M(8o, 1)=5 for some HE(KEK)*,
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1} It follows from this definition and Definition 6 that ¥ (To) = S,.
2)  We can also show that § is a mapping of T onto §.

For VEEKEK and VtET, we can write wit)=§, Y(t')=5' and ﬁ{t, E)=t". From the
definition of ¢, ﬁ{Tn JH) =t ﬁ[gu » H) =1, E{T._-.%IJ} =t', and ﬁﬂ[_gn, v)=§ f:rfme Mand v
E(KZK)*, and we have Y(N(t, £)) = g(t') = =M(So,7) and M(S,, HE) =M(M(So, u)..£) =
M(¥(t), £). Since N(To, ) =N(To, ut), B[Sy, v) =M(So, ut). Hence w(Ri, £)) =M(¥(x), b
for each +T and each FEK ZK,

3)  Let y(t)=3, then iﬁ{éq,ﬂ] and tEE{Tn.u} for some pE(KTK)* Hence, = (EF
+ uEbh(B)=bh(A) * t=N(T,, u)EG.
4)  We can see from the definition of ¢ and CDLA that AMe)=y(W(t)) for each tET.

By Theorem 1, we have the following carollary,

Corollary 1: A/~ is the unique (up to isomorphism) CDLA which has the
smallest number of states and is equivalent to A,

4. Minimization Algorithm
Given a finite local automaton, we are to construct an NDLA with the same
behavior having the fewest states. For ordinary automata, Kameds and Weiner [2]
have investigated the minimization problem. In this section, we modify their
definitions and algorithm, and apply them to local automata.

Definition 10. The dauls A and A of a local automaton A=(S,M,S,,F,7) are
defined as E={s. M, F, S,, ¥) and f={5. M, S, So, 7) where M is a function such that
for VoEL, ¥ 5, and v qeﬁ{q.a} “  5EM(s, o).

It is obvious that %Efi'-d.

Definition 11. Given an NDLA A=(5, M, 54, F, 7), the succeeding events,
SCa (si) and SCj(s;), and preceding event PR, (si) of a state 5; of A are defined by

SCa (5)= b"l{5+ M, s, F, 7))

SCA(si)= bh((S, M, 5, F, 7))

PR (s;)= bh{(S, M, So, 3, 7)).

Two states of A, 5 and sj, are said to be equivalent, written si=sy, iff
SCA(8i)=SCa(sj) and SC4(5)=SCj(s)).

Lemma 2: A CDLA is reduced iff no two distinct states are equivalent,

This proof is immediate from Corollary 1.

Definition 12. Given an NDLA A=(S, M, S, F, ¥), we define the subset CDLA
associated with A to be D(A)=(P, M', By, F', 7"), where

Po=So iy~ 'y

P=1{Ni(p, x) | pEPo, xE(KZK)* | = {p1, 2. - - - ;pum}
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F'= { peP | pNF#p |}

M'(pi, 0)=p; = Mip;, o)fy "7 py foralli,j, and VoEX.

7 (pi) = ¥s) for VsSp;,

Lemma 3: bh(D(A))=bh(A). bh~(D(4))=bh~(4)).

This lemma is so easily verified that we omit the proof.

Definition 13. Given an NDLA A=(S, M, S,. F, 7), let B=D(A)=(P, M, Py, F',
Y'), C-D(A)=(Q, M", Qq, B", 7"), and D=D(T)=(R, M"", Ry, F"", 7'}, Also we let
S, Pi€P, q;=Q, and ryER. A states map (SM) of A contains a row for each
nonempty state of B, and a column for each nonempty state of C and D. The (i, j)
entry contains piNgj, or is blank if piNigi=¢. The (i, m+k) entry contains pi iy, or is
blank if pilry=¢, where m is the number of elements in Q. An elementary local
automaton matrix (ELM) of A is obtained from an SM of A by replacing each
nonblank entry by 1.

Definition 14, A reduced local automaton matrix (RLM) of A is obtained from
an ELM of A by merging all the equivalent rows and columns, where merging of two
rows (columns) means the replacing of two rows (columns) by a new row (column).

Theorem 2: Let I be an equivalent class of NDLA. A unique (within permutation
of the rows and columns) RLM exists for all local automata in I
This can be proved similarly as done by Kameda [2].

Definition 15. Given an RLM, if all the entries at the intersections of a set of
rOWs {Pi1y---, Pia} and a set of columns {[qj,..., Qi Tkis» - o9 Tke) are 1's,
then this set of 17s is said to form a grid. We represent the grid by g= {piy, .. , pias
I‘.|j1,++.,qjhirk|......+rk:'r.

Definition 16. A set of grids forms a cover if every 1 in the RLM belongs to at
least one grid in the set.

Definition 17. Let A=(P, M, Py, F, 7) be a CDLA. The pair <Z, £> is called a
subser assignment to B if Z is a finite set and £:P<+2"—{¢) is a function. The natural
subset assignment to the subset CDLA D{A) is <S, >, where § is the set of states of
A and f(p)={s|SP} for VpEP.

Definition 18. Let B=(P, M, Py, F, 7) be a CDLA, and let <Z, > be a subset
assignment to B. Then define an NDLA 1(Z, £, B)= (Z, N, Zg, G, ), where for ¥VzEZ,
¥ pEP, and ¥ UEKEK,

1) Zo=f{Po)

2) #6 * [z€6p) % pF]

3) Z€N(z u) * [:€f(p) = CHM(p,u))]

4) Mz)=v(p) for zE1(p).
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I{Z, f, B) is called the NDLA obtained by the intersection rule from B.

Definition 19. A subset assignment <Z, £> to a CDLA B is legitimate iff bh(I(Z,
f, B))=bh(B) and bh~(I{Z, f, B))=bh~(B).

Lemma 4: For <Z, £>, bh(I(Z, f, B))Cbh(B) and bh~(I(Z, F, B))Sbh~(B).

We omit the proof (see [2]).

Lemma 5: The natural subset assignment is legitimate,

Proof: Let A=(S, M', Sy, F', 7') and B=D(A)=(P, M, Py, F, 7). We show that
bh(I(S, f, B))=bh{B) and bh~(I(8, f, B))=bh™(B) for the natural subset assignment <8,
£>. Let I(S, f, B)=(S, N, Zo, G, 7). Then for V0EE, V€S, ¥ pEp and ¥ wEKEK,

1) Zy=Pp=5,

2) €F = [£€p = pEF| = G, so that F'CG,

3) SEM'(s, ) = [p = s'EM(p,u)] = s'EN(s, ), so that M'(s, u) SN(s, ).

Thus it is clear that M'(Sy, x)NF'#$ = N(Zo, x)NG#¢ and M'(S, x)#¢ = N(Z,,
x)#9. These imply that bh(A)Sbh(I(S, f, B)) and bhA)Cbh((S, f, B)). But
bh{A)=bh(B) and bhTA)=bh7{B) by Lemma 3 and bh{I(8, f, B))Sbh(B) and bhTI(S, f,
B))SbhB) by Lemma 4. Hence bh(I(S, f, B))=bh(B) and bhi(S, f, B)}=bhB).

We can prove the following theorem just the same way as Kameda [2].

Theorem 3: Given any NDLA A, there exists a legitimate cover over an RLM of
A such that the NDLA obtained by the intersection rule using the subset assignment
associated with the cover is a minimum NDLA.

With these preparations, we are now to describe a minimization algorithm of
NDLA's.

Minimization Algorithm
1)  Given an NDLA, construct its RLM and find a minimum cover,
2)  Let iy be the number of grids in the minimum cover derived above and set i = i,.

a)  For each cover containing i grids, test whether it is legitimate,

b)  If no legitimate cover is found, set i=i+ 1, and go to step a).

It is obyious that the process should terminate after a finite number of cycles.

5. Conclusion

In this paper we have described a procedure for finding a minimum state
nondeterministic finite local automaton equivalent to a given finite lcoal automaton.
The minimization theory for local automata can be given in almost the same way as
the standard theory by introducing the characteristic transition function and the class
of CDLA’s.
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