Journal of Cireuits, Systems, and Computers, Vol. 3, No, 4 (1993) 859-875
@ World Scientific Publishing Company

A SEARCH SPACE PRUNING METHOD FOR TEST FATTERN
GENERATION USING SEARCH STATE DOMINANCE®

TAKAYUKI FUJINO

Departmeni of Computer Sciemce, Medfi Universify,
1=1-1 Higashimita, Toma-Ku, Kawasaki 21§, Japan

HIDEO FUJIWARA

Craduate School of Informalion Science, Nara Inatitute of Science
and Technology, 8506-5 Takayama-Cho, Jkoma, Nara, 630-01 Japan

Received 8 June 1992
Revised 10 September 1993

In this paper, we present a new technique that can prune search space in test-pattern
generation for combinational circuits. We extend the concept of search state equivalence
derived by Giraldi and Bushnell, to that of search state dominance, and propose a new
extended method, DET (Dominant STate hashing) algorithun, based on the search state
dominance. The DST algorithm can prine the search space more effectively than the
EST (Equivalent STate hashing) algorithm of Giraldi and Bushnell. Experimental results
on benchmark circuits are reported.

1. Introduction

A significant amount of research has been devoted to finding more efficient
algorithms for combinational logic test pattern generational.!*'? Among those al-
gorithms, the D-algorithm® was the first complete algorithm that could generate a
test-pattern for any logical fault if such a test-pattern existed and encugh comput-
ing time was given. The second significant progress in aceelerating algorithms was
achieved by PODEM? and FAN 5® However, the computational resources required
for test generation were still immense, i.e. there still remained some aborted faults
in the ISCAS’85 benchmarks? due to the limited computing time. Later, some ap-
proaches and improvements®'? were proposed and succeeded in handling all faults
in the ISCAS’85 benchmarks by either generating a test-pattern or a redundancy
proof. Among those approaches, Giraldi and Bushnell'? proposed a new test gen-
eration method, called the EST (Equivalent STate hashing) algorithm, in which
search states were saved for all faults during test generation to prune the search
space by using the information about previously visited states. The EST algorithm

*This paper was recammended by Associate Editor H. Yasuura.

B5D

880 T. Fujine & H., Fujiwara

has a characteristic feature such that it is orthogonal to all existing test generation
algorithms, so it can be used to accelerate any test-pattern generator.

In this paper, we present a new technique that can prune the search space
in test-pattern generation for combinational circuits. We extend the concept of
search stale equivalence derived by Giraldi and Bushnell, to that of search siate
dominance, and propose a new extended method, DST (Dominant STate hashing)
algorithm, based on the search state dominance. The DST algorithm can prune the
search space more effectively than the EST (Equivalent STate hashing) algorithm.
First, we introduce the EST algorithm of Giraldi and Bushnell and come concepts;
search state, evaluation frontier, and search state equivalence. Then, we extend
the concept of search state equivalence to search state dominance, and then present
some theorems and the DST algorithm. We illustrate the benefits of DST through
examples of decision trees. Experimental results on benchmark circuits are also
reported.

2. The EST Algorithm

Combinational logic circuits are tested by applying a sequence of input patterns
that produce erronecus responses when faults are present and then comparing the
responses with the correct (expected) ones. Such an input pattern or a primary
input (PI) assignment used in testing is called a test-pattern. The problem of gen-
erating a test-pattern for a given fault can be viewed as a finite space search problem
of finding a point in the search space that corresponds to a test-pattern. Test gen-
eration algorithms like PODEM? make a series of primary input (PI) assignments
for fault sensitization and propagation in the circuit. When a faunlt is sensitized, a
D-frontier appears in the circuit, where a D-frontier is defined as a set of gates with
unspecified outputs and some input signal set to D or D. Further PT assignments for
advancing the D-frontier to a primary output (PO) of the circuit find a test-pattern.
During this process, backtracking occurs when either the D-frontier disappears or
when the fault site is not sensitized. In this way, test generation algorithms usually
build a decision tree and apply a backtracking search procedure. Each node or step
in the decision tree corresponds to a partial PI value assignment. Implication or
five-valued (0, 1, X, D, D) logic simulation for the partial PI assignment forms a
decompaosition in the circuit. Since each node in the decision tree corresponds to a
search state, the search state is defined as the logic circuit decomposition derived
from the PI assignment corresponding to the decision step. Figures 1({a), (b) and
(¢) show decompositions for sensitized (unsensitized) faults.

Giraldi and Bushnell'? introduced evaluation frontier (E-frontier) to represent
a search state more efficiently. The E-frontier represents a complete circuit cut-set
labeling and uniquely identifies a circuit decomposition. In a five-valued (0, 1, X,
D, D) test generation algorithm, an E-frontier consists of all internal nets labeled
with values other than X (unassigned) that are connected to the circuit POs by a
path of gates with unassigned values (an X-path). In Fig. 1(a), the PI assignment

A Search Space Pruning Method for Tesl Pallern Generation Using ... 861

is {2 = 0}, and the E-frontier is {5 = D, 27 = 1}. In Figs. 1(b) and (¢), those
Pl assignments are {z2 = 0, 3 = 0} and {z1 = 1, 22 = 1}, respectively, and
have the same (equivalent) E-frontier {x6 = 1, 27 = 1}. Subsequent operations
on such equivalent circuit decompositions produce equivalent results, and hence we

define scarch slale equivalence as follows: search states are called equivalent if their
E-frontiers are equivalent.

pa=bok

(e}

Fig. 1. Decompositions for Sensitized and Unsensitized faults (a) sensitized fault (b) unsensitized
fault () unsensitized fault.

862 T. Fujine & H. Fujivara

Giraldi and Bushnell proposed an approach to early identification of search path
termination conditions by using E-frontiers, i.e. pruning search space, Consider the
incomplete decision tree of Fig. 2 representing the search space for fault f. Node
letters represent search states at each decision step. E-frontiers are computed at
each node. Search starts at the root node A and proceeds in depth-first search order
up to node G with implication resulting in search state C'. Suppose that the E-
frontier of C” is equivalent to that of C'. Then we can back up (backtrack) without
exploring implications from €' since search state C' equivalent to C' is known to be
inconsistent.

Fault g Fault

Fig. 2. Equivalent states in current and prior [aults.

Consider another early search termination example. Suppose that a test-pattern
for fault f is generated as shown in Fig. 2. Suppose that we start searching a test-
pattern for another fault g. When z2 is set to 0 in search state L, search state H'
is created and found to be equivalent to node H for fault f. If the fault has been
sensitized, i.e. the E-frontier contains the values D or D, then all subsequent PI
assignments for fault g will be identical to those previously made for fault f. Since
node H for fault f is on a path to a test-pattern, the unassigned PI's for fault g
are set to those corresponding to PI assignments for fault f and search terminates
immediately with a test-pattern for fault g.

3. Search State Dominance

In this section, we extend the concept of search state equivalence to that of search
state dominance and present thearems for search path termination.

A Search Space Pruning Method for Test Pattern Generation Using ... 563

An E-frontier E can be represented by a set of pairs of net &N and its value v, i.e.
E = {(N1,v1), (Ng,va), ..., (Np,p)}or E={Ny = v, Na=vg, ..., Ne = i}
Let E; and E; be E-frontiers. We say that E; dominales E; if
(1) any pair (N,v) in E; is included in E; (i.e. E; C Ej), and
(2) any pair (N,v) in Ej such that v = D or D is included in E; (i.e. both E; and

E; eontain the same D-frontier).

For example, consider four E-frontiers, E; = {z1 = 0, 22 = 1}, E; = {21 =
fegd =180 =198 2 B = =l = {1 51 =188 =188 = E}, and
Ey={z1=0,23 = 1, z4 = D}. E, dominates E, since E; C E,. However, E;
does not dominate Ej since D-frontiers of Fy and F5 are not the same. On the
other hand, Fy dominales Ej since By C Es and both Ey and Ey contain the same
D-frontier (24 = D).

An E-frontier E is said to be sensifized if it contains value D or D, i.e. the
D-frontier of E is not empty. An E-frontier £ is said to have a solution if there is
a path from the node of the E frontier to a node of a test-pattern in the decision
tree,

In the following, we present two theorems for early identification of search path
termination. The first is the theorem in the case of searching a test-pattern for the
same target fault.

Theorem 1: Let E; and E; be E-frontiers for the same target fault f. If E

dominates E; and £; has no solution, then E; has no solution.

Proof: Here we shall consider the PODEM algorithm? as the base test generation
algorithm for the DST algorithm. We can similarly give proof of this theorem for
other base test generation algorithms.

E; and E; are E-frontiers for the same target fault f. Let N; and N; be nodes
(search states) corresponding to F; and Ej, respectively, in the decision tree. Let
Ai and A; be Pl assignments with which the search proceeds from the root node to
N; and Nj, respectively. Since E; dominates Ej, we have (1) E; C E; and (2) both
E; and E; contain the same D-frontier (the D-frontier is empty when E; and E; are
unsensitized). This implies that a node N} whose E-frontier is E; can be reached
from node N corresponding to E; by assigning some values on unassigned Pls. Let
Aj; be those corresponding PI assignments that transfer the search state from E;
to E;. Hence, node N; can be reached from the root node by PI assignments A;
followed by Ayj.

Suppose that E; has no solution for fault f but E; has a solution for the same
fault f. Since E; has a solution for fault f, node N; corresponding to E; in the
decision tree is on a path Lo a test-patiern for fault f. Let Ay, be those corresponding
FI assignments that transfer from node N; to the node where a tesi-pattern has
been generated. The resulting test-patiern is the PI assignments A; followed by
Aje. Since N has the same E-frontier as Nj, node N} is also on a path to a test-
pattern for fault f. Furthermore, since N; can be reached from N;, node N is also
on & path to a test-pattern for fault f. That is, the Pl assignments A; followed by

864 T. Fujino & H. Fujiwara

A;; and Ay, can be the test-pattern for fault f. This contradicts that E; has no
solution for fault f. Hence, if E; dominates E; and E; has no solution, then E; has
no solution.

Q.E.D.

Example 1: Let us try to generate a test-pattern for a fault £7 s-6-0 in the circuit
of Fig. 3(a). Let us first consider a conventional approach to searching a tesi-
pattern for the fault. The decision tree is shown in Fig. 4(a). First we must set
z7.= 1 to activate the fault 27 s-a-0. To justify 7 = 1 we first try £l = 0. This
implies 27 = D. This state corresponds to node 1 in Fig. 4(a) and the E-frontier is
E, = {#7 = D}. To propagate the error or D-drive, we set 2 = 1, which implies
{22 = 1, 29 = D} (node 2 in Fig. 4(a)) and the E-frontier E; = {2 =1, z0 = D}.
To D-drive further, we try to set 3 = 1. However, this leads z11 = D, 212 = 0

ﬂ—jll_h_xlﬂ

x13

x3 > x12
(k)

Fig. 3. E-frontiers in test generation (a) search state of node 3 in Fig. 4 (b) search state of node 7
in Fig. 4.

A Search Space Pruning Method for Test Paltern Generation Uaing ... BG5S

i

(<)

Fig. 4. Comparson of eguivalence and dominance (a) conventional search (b) eguivalence
(c) dominance,

866 T. Fupine & H. Fuyiwara

and #13 = 1, i.e. empty D-frontier, which implies an inconsistency (node 3 in
Fig. 4(a)). Hence we must backtrack to node 2 in the decision tree in Fig. 4(a) and
reverse the value, i.e. £3 = 0 (node 4 in Fig. 4(a)). In this way, the test-pattern
generation proceeds exhaustively until it reaches the final node 12 of the decision
tree in Fig. 4(a) and fails to generate a test-pattern for the fault 7 s-a-0. The fault
z7 s-a-0 is undetectable or redundant.

Next let us consider the EST algorithm.!? At node B of the decision tree in
Fig. 4(a) the E-frontier E; = {22 = 1, 29 = D} is equivalent to the E-frontier at
node 2. The FE-frontier also contains a D-frontier, i.e. the fault is sensitized and
propagating at both nodes 2 and 8. Since the E-frontier of node 2 has no solution
and both E-frontiers of nodes 2 and 8 are the same, the E-frontier of node 8 also
has no solution, and hence we can backtrack without further search from node 8.
EST can avoid wasting time exploring implications from node 8. This process is
illustrated in Fig. 4(b).

If we look at node 7 in the decision tree of Fig. 4(a), we find out that the E-
frontier of node 7, {27 = D, =8 = 1}, is dominated by the E-frontier of node 1,
{27 = D}. Sinee we know that there is no solution under node 1 in the decision tree,
the E-frontier of node 1 has no solution. Ience, from Theorem 1 we can see that
the E-frontier of node 7 also has no solution, and we can backtrack from nodes 7 to
6 without further search under node 7. This is illustrated in Fig. 4(c). By using the
dominance relation of E-frontiers, we can terminate unnecessary searching earlier
than the EST algorithm.

Next, we present a theorem for search path termination based on dominant
search states in current and prior target faults.

Theorem 2: Let E; and E; be E-frontiers which are sensitized for target faults f;
and f;, respectively.

(a) If E; dominates E; and E; has a solution, then E; has a solution.

(b) If E; dominates E; and E; has no solution, then E; has no solution.

Proof: By the law of contraposition, (b) can be implied from (a). So, we shall
prove (a) in the following.

Let N; and N; be nodes (search states) corresponding to E; and Ej, respectively,
in the decision tree. Let A; and A be Pl assignments with which the search proceeds
from the root node to N; and Nj, respectively. E; and E; are sensitized for target
faults fi and fj, respectively. Furthermore, since E; dominates Ej, we have (1)
E; C E; and (2) both E; and E; contain the same D-frontier D;; (not empty).
This implies that a node N} whose E-frontier is Ej can be reached from node N;
corresponding to E; by assigning some values on unassigned Pls. Let A;; be those
corresponding P1 assignments that transfer the search state from E; to E;. Hence,
node N_‘; can be reached from the root node by PI assignments A; followed by A;j.
Since E; and E; have the same D-frontier D;;, nodes N; and N have the same
D-frontier D;;. The D-frontiers of N; and N;,-' are sensitized for fault f;, and the
D-frontier of Nj is sensitized for fault f;.

A Search Space Pruning Method for Test Pattern Gemeration Using ... 867

Since E; has a solution for fault f;, node N; corresponding to Ej is on a path
to a test-pattern for fault f;. Let Aj, be those corresponding Pl assignments that
transfer from node N; to the node where a test-pattern for fault f; has been gen-
erated. The resulting test-pattern is the Pl assignments A; followed by A;,. The
PI assignments Aj; can propagate at least one of the sensitized values (for fault
f;) in the D-frontier Dy; of E; to at least one primary output (PO). Since N has
the same E-frontier as Nj, at least one of the sensitized valued (for fault f;) in
the D-frontier of Nj can be propagated to at least one PO by PI assignments A4;,.
Therefore, node N; is also on a path to a test-pattern for fault f;. That is, the PI
assignments A; followed by A;; and A;, can be the test-pattern for fault f;. Hence
E; has a solution for fault f;.

Q.E.D.

Example 2: Let us consider two faults, £5 s-a-1 and £10 s-a-1, in the circuit
of Fig. 5. First we consider to generate a test-pattern for the fault £5 s-a-1. In
Fig. 5(a), the test-pattern generation process for fault £5 s-a-1 is illustrated. The
test-pattern is (z1,z2,£3, 24, 25,26) = (1,1,1,1,0,1).

Consider the subsequent search for fault £10 s-a-1 in Fig. 5(b). The test-pattern
generation proceeds as indicated in Fig. 5(b). The corresponding decision tree is
shown in Fig. 6(a). According to the EST algorithm, only the equivalence relation
among E-frontiers is checked. Henee, in this example, at Step 6 in Fig. 5(b) the
computed E-frontier, {z11 = D, 20 = 1,23 = 1}, is found to be identical to
the E-frontier in Step 6 of the decision tree for the fault =5 s-a-1 (Figs. 5(a)).
The E-frontier contains D-frontier. Hence, all subsequent PI assignments for fault
zl(s-a-1 is identical to those previously made for fault =5 s-g-1. Since node 6
for fault 5 s-a-1 is on a path to a test-pattern (Fig. 6(a)), the unassigned Fls for
fault x10 s-a-1 are set to those corresponding Pl assignments for fault x5 s-a-1, ie.
z6 = 1, and search terminates immediately with a test-pattern for fault £10 s-a-1,
(z1,22,23,24,25,26) = (1,1,1,0,1,1).

If we look at Step 2 in Fig. 5(b) or node 2 in the decision tree of Fig. 6(b), we find
out that the E-frontier in Step 2, {z11 = D}, dominates the E-frontier, {7 = D},
in Step 6 of the decision tree for the fault #5 s-a-1 (Fig. 5(a)). In Fig. 6(b), node 6
for fault £5 s-e-1 is on a path to a test-pattern. Therefore, from Theorem 2 we can
see that fault £10 s-a-1 also has a test-pattern. The test-pattern is immediately
obtained by setting the unassigned PIs for fault £10 s-a-1 to those corresponding PI
assignments for fault £5 s-a-1, i.e. (z1,22,23,26) = (1,1,1,1). The PI assignment
at node 2 in the decision tree for fault 210 s-a-1 is (24, 25) = (0, 1). Hence the test-
pattern for 210 s-a-1is (21,22, 23, 24,25,26) = (1,1,1,0,1,1). Figure 6 shows the
comparison of two decision trees based on search state equivalence and dominance.
We can see that if we use the dominance relation of F-frontiers, we can reduce the
size of search space and hence the time to search the space more effectively than

the EST algorithm.

868 T, Fujine & H. Fujiwara

x12

FI

{x11=D, x%=1, x3=1} in siep 6

Step Assignment E-frontier

15=0
x3=0
=1
xl=1
x2=1
xd=]
a=1

=] G Lh L -

{ x5=D}
{x7=1}

{ x5=D . x3=1}
{ ﬂﬂﬁ i ;3=1,xl,=l}
{ x5=D , x8=1,x3=1}

~a— Backirack

{x11=D, x8=1, x3=1}
{x7=D} —— Test-patiem generaiod
{a)
X6 —

{x11=D} in step 2

x4
x5=1
x3=0
=l
xl=1
x2=]
x=1

uiﬁ-m-ﬁ'-‘-‘“—lg

éli-l}.nﬁhl.ﬂ*——l} inslep6

Assipnment E-frontier

gﬁ:gi —————— Dominates slep & in (2)
{x7=1} -t ————— Backtmck

{x11=D, x3=L1.}
{x11=D x3=1, x1=1}
{x11=D, x8=1,x3=1}
{x7=D}

-g— Equivalent 1o step 6in (a)
=s— Test-pattern gencrated

(b)

Fig. 5. Test generation for (a) 5 s-a-1 and (b) 210 s-a-1 faults.

A Search Space Pruning Method for Test Patlern Generafion Using ... BE9

{x11=D}

"u

(6){x11=D, x9=1, x3=1}
i x6

(b)

Fig. 6. Comparison of (a) equivalence and {b) dominance.

870 T. Fujine & H. Fujiwara

4, The DST Algorithm

In this section, we present the DST (Dominant STate hashing) algorithm based on
the search state dominance which is an extension of the EST algorithm.'? In the
same way as the EST algorithm, the DST algorithm can be added as a subalgorithm
to any test-pattern generation algorithm, i.e. it is orthogonal to the operations of the
base test-pattern generation algorithm and works with any test-pattern generation.

Imphication of Pl's

Y

Compuie E-[rontier Ec
of currcat search state

Y

Push all E-fromtiers
hashed by Ec an stack

1 515
I’—'_.

Pop stack: Es

Fig. 7. DST algorithm.

A Search Space Pruning Method for Test Paltern Generation Ueing ... 8T1

Figure 7 shows the DST algorithm. A hash table is used to determine search
state dominance. Each E-frontier is stored in the hash table with the data associated
with the E-frontier, which includes the target fault, the solution flag (solution/no
solution) and the test-pattern (if it exists). After implications in the base test
generation algorithm, the DST algorithm starts and ends in one of the following
three cases:

(1) exit with a test-pattern,
(2) exit to backtrack, or
(3) exit to continue the base test generation algorithm normally.

After starting the DST algorithm, each new E-frontier is computed and hashed
into the hash table as follows: Let k; be the total sum of index-numbers of all
signal lines that have a faulty signal, D or D, in an E-frontier E;. For example,
consider E; = {z1 =0, 22 = D, 23=D, 24 = 1}, then &, = 2+ 3 = 5. Here,
we use this sum k; as a key of the E-frontier E; in hashing. If E; dominates
E;, then both E; and E; contain the same D-frontier, i.e. they have the same
faulty signals (D or D), and hence k; = k;, i.e. they have the same key. For
example, consider two E-frontiers, £}, = {z1 =0,22 =D, 23 = D, z4 = 1} and
E;={1=0,22=0,23=D,x24 = 1,25 = 0}. E, dominates E; and they
have the same keys, i.e. &y = ky; = 5. As a hash function h, we adopt the most
commonly used method for hashing, i.e. to choose M to be prime and, for any key
k, compute h{k) = k mod M.

All E-frontiers that dominate or are dominated by the current E-frontier Ee are
taken from the hash table by hashing the key of Ec and then by checking whether
each hashed E-frontier dominates or is dominated by Ee. Then they are pushed
on a stack. Note that this stack is generated for each implication of Pls. If the
stack is empty, the base test generation algorithm continues normally. While the
stack is not emply, each stack entry is examined. Let Es be the E-frontier of
the stack entry.

In case that Es is for the same fault as Ee, we further examine Esz as fol-
lows: If Es dominates E'e and E's has no sclution, the algorithm exits to backtrack
(Theorem 1). Otherwise, the algorithm pops the stack and continues the stack
loop. In the case that £s is for a different fault from Ee, we further examine as
follows: Il neither E'c nor E's is sensitized, the base test generation algorithm con-
tinues normally. If Ec and Es are both sensitized and if Fe dominates Es and E's
has a solution, the test-pattern is formed and the unstacking loop is exited with a
test-pattern for the eurrent fault (Theorem 2(a)). If Fc and Es are both sensitized
and if Es dominates Ec and E's has no solution, the algorithm exits to backtrack
{Theorem 2(b)).

5. Experimental Results

The EST and DST algorithms have been implemented with PODEM? in the C pro-
gramming language on a Sun-4/330, a 16 MIPS machine with a 32 Megabytes

872 T. Fujine & H. Fujivars

of memory. We have compared the resulting performance of PODEM and PO-
DEM+DST, without any random-pattern generation or fault simulation. 'We have
used no additional heuristics other than the Equivalent State Hashing and Domi-
nant State Hashing algorithms. The backtrack limit is 1000. The results are given
in Tables 2-4. The characteristic of the ISCAS'85 benchmark circuits used herein
is shown in Table 1.

Takble 1. Characteristics of [SCAS'S8S benchmark circuits.

Circuit #Pls #POs #0Cates #Faults #Detectable faults #Redundant faults

C4a32 a8 7 160 524 520 4

C499 41 a2 22 T5& 750 &

C880 60 26 383 042 842 0
1355 41 32 546 1574 1566 B
Ci1o08 33 25 880 1879 1870 9
C2670 23 140 1153 2747 2630 117
C3540 50 22 1668 3428 3241 137
Csms 178 123 2307 5350 52491 59
Ce288 az 3z 2406 TT44 7710 M
CT5562 207 108 3512 7550 7419 131

‘Table 2. Frequency of equivalent/dominant state hashing.

P #Hash tests #Hash backtracks
Equivalence Dominance Dift Equivalence Dominance Dt
C4a2 5 113 as 1981 1984 3
C499 212 235 24 i] o o
CE80 206 247 41] (1] o
C1355 672 T8 56 0 o 0
C1908 770 800 30 25 25 o
C2aT0 B84 1145 140 3200 9328 G128
C3540 648 B18 120 3478 4543 1087
C5315 850 1281 4372 a5 100 a5
C6288 1059 1527 463 0 1] 0
7552 1067 1240 173 220 506 286

Table 2 compares the frequency of E-frontier matching in equivalent state hash-
ing and dominant state hashing for PODEM+DST. #Hash Tests is the number of
test-patterns found by equivalent/dominant state hashing. #Hash Backtracks is

A Search Space Pruning Method for Test Pallern Generalion Usming ... B73

the number of backtracks found by equivalent/dominant state hashing. Diff is the
difference between the dominance and equivalence values; the value of the domi-
nance column minus the value of the equivalence column. Hence the column Diff
shows the effect of the dominant state hashing over the equivalent state hashing,
i.e. the number of early search terminations that cannot be found by the equivalent
state hashing. From Table 2, the DST algorithm has a higher possibility of early
search termination than the EST algorithm, especially the circuits C2670, C3540
and CT552.

Table 3 shows the comparison of the number of backtracks, the number
of implications and CPU time for all faults targeted. #Backtracks-PODEM
(PODEM+DST) shows the total number of backtracks for all faults in PODEM
(PODEM+DST). #DBacktracks-Difference shows the total number of backtracks
in PODEM minus that in PODEM+DST. #Backtracks-Difference hence shows
the effect of backtrack reduction caused by search space pruning. Similarly,
#Implications-PODEM (PODEM+DST) shows the total number of implications
for all faults in PODEM (PODEM~+DST). #lmplications-Difference shows the total
number of implications in PODEM minus that in PODEM4DST. #Implications-
Difference hence shows the effect of implication reduction caused by search space
pruning.

Table 3. Perfonnance comparison of search space pruning.

Boacktracks #lmplications CPU time (sec)

= PODEM PODEM Difference PODEM PODEM Difference PODEM PODEM
+DST +DST +DST
C43l 44020 44030 0 50813 49362 951 3538 1086.8
C499 2628 8660 28 35058 2TA46 8112 TITT 1012.0
Ca80 1 1 D #515 T214 1311 1144 107.4
C1356 8482 8343 140 BA6TE 30304 25372 13096 12831
C1908 9118 B0TE 40 36306 27TIA 7582 s78.9 13211
CI670 158801 84378 63423 153788 110000 63798 TIT33 124805
C3540 210508 208769 1739 240083 242305 6688 11622.9 S06ELEG
C5315 16422 15730 692 82345 60214 13138 6863.0 67336
C6288 I7EB4l 27ESdL] 471419 450955 20464 435809 219649.8
C7552 160329 154661 5668 323505 296648 26857 351219 2410234

In spite of the success in pruning search space, PODEM+DST requires however
more CPU time than PODEM. This is due to the time consuming process of in-
formation saving and retrieval with memory constraints. We set the maximum size
of the hash table, i.e. the maximum number of E-frontiers to be 50000. For large
cireuits, this limit was insufficient and more storage was required. Since the main
purpose of this experiment is to show the superiority of DST on pruning search

874 T. Fujine & H. Fyjivara

space, we have implemented a very simple system with a primitive technique for
hashing or information retrieval that is nothing but a prototype. Hence to resolve
this problem, much faster and more efficient information retrieval techniques for
search states should be adopted in the system.

Table 4 shows the performance comparison of fault coverage for PODEM and
PODEM+4DST with a backtrack limit of 1000. The results indicate that the fault
coverage of PODEM+4DST is higher than PODEM for circuits C2670, C3540 and
C7552. This result also shows the effectiveness of the search space pruning in
PODEM+DST.

Table 4. Performance comparison of fault coverage.

#Detected faults #FRedundant faults #Aborted faults Fault coverage %

. FODEM PODEM PODEM PODEM PODEM PODEM PODEM PODEM
+D5T +DST +D5T +DST
G432 482 482 (1] 0 42 42 91,98 91,98
C499 750 750 (1]] & 8 8,94 8,54
Cas0 942 942 o 0 0 o 100,00 100,00
C1355 1566 1566 (1] 0] B 9,49 99,49
C1908 1864 1864 € 6]] 90,52 99,62
C2670 2565 2619 * 58 80* 124 48* 95.49 98,25 *
3540 3185 3188 * T4 T4 169 166 * 95.07 95.16 "
5315 5288 5288 55 55 T T 0,87 99,87
Ca2838 T504 T504 az 32 208 208 97.31 97.31
C7552 TG T346 59 62" 145 142* 08,08 98.12*

6. Conclusions

We have presented a new test-pattern generation algorithm based on a new concept
called search state dominance. Search state dominance is an extended concept of
search state equivalence introduced by Giraldi and Bushnell.'* We have presented
some techniques which can prune search space during test-pattern generation. Some
theorems have been shown to guarantee the effectiveness of the search space prun-
ing. The DST algorithm has been described and can be added to any test-pattern
generation algorithm as a subalgorithm. We have finally presented the experimental
results on [SCAS'85 benchmark circuits which show that the DST algorithm has
the high possibility of pruning search space more effectively than the EST algorithm
of Giraldi and Bushnell.!?

References
1. H. Fujiwara, Logic Testing and Design for Testability, MIT Press, 1985.

10.

11.

12.

A Search Space Praning Method for Tesi Patiern Generation Using ... 875

F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits™,
Proc. IEEE Int. Symp. Circuits and Systems: Special Session on ATPG and Fault
Simulalion, June 1985,

. J. P. Roth, "Dia,gumis of antomata failures: A calculus and a method™, IBM J. Res.

Develop. 10 (1966) 278-201.

. P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic

circuits®, [EEE Trans. Comput. ©-30 (1981) 215-222.

. H. Fujiwara and T. Shimono, “On the acceleration of test generation algorithms”,

IEEFE Trans. Compul. C-32 (1983) 1137-1144.

. H. Fujiwara, “FAN: A fanout-oriented test pattern generation algorithm”, Proc. IEEE

Int. Symp. Circuits and Systems, June 1985, pp. 671-6T4.

. T. Kirkland and M. R. Mercer, “A topological search algorithm for ATPG", Proc.

24th ACM/IEEE Design Automation Conf., June 1987, pp. 502-508,

. M. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly efficient automatic

Lest-paltern generation system™, JEEE Trans. Computer-Aided Des. T (1988) 128-
137.

. M. Schulz and E. Auth, “Improved deterministic test-pattern generation with appli-

cations to redundancy identification”, [EEE Trans. Computer-Aided Des. 8 (1989)
B11-B16.

T. Larrabee, “Efficient gﬂn::nﬁon of test patterns l.lslmg Boolean difference®, Proc.
IEEE Int. Test Conf., Aug. 1989, pp. T95-801.

J. Rajski and H. Cox, *A method to calculale necessary assignments in algorithmic
test pattern generation®, Proc. JEEE Int. Test Conf., Sept. 1990, pp. 25-34.

J. Giraldi and M. L. Bushnell, “EST: The new frontier in automatic test-pattern
generation”, Proc. 27th ACM/IEEE Design Automation Conf., June 1990, pp. 667
672.

	スキャン
	スキャン 1
	スキャン 2
	スキャン 3
	スキャン 4
	スキャン 5
	スキャン 6
	スキャン 7
	スキャン 8
	スキャン 9
	スキャン 10
	スキャン 11
	スキャン 12
	スキャン 13
	スキャン 14
	スキャン 15
	スキャン 16

