IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6, NO. 7, JULY 1995 677

Optimal Granularity and Scheme of Parallel Test
Generation in a Distributed System

Hideo Fujiwara, Fellow, IEEE, and Tomoo Inoue, Member, IEEE

Abstract—A Client-Agent-Server model (CAS model) which
can decrease the work load of the client by adding agent proces-
sors to the Client-Server model (CS model) is proposed and an
approach to parallel test generation for logic circuits on the CAS
model is presented. Two problems are considered: optimal
granularity problem and optimal scheme problem. First, the
problem of parallel test generation on the CAS model is formu-
lated to analyze the effect of the granularity (grain size of target
faults allocated to processors) in both cases of static and dynamic
task allocation (optimal granularity problem). Then the relation-
ship between the number of processors and the total processing
time is analyzed (optimal scheme problem). From the analysis, it
is shown that the CAS model can reduce the total processing time
over the CS model and that there exists an optimal scheme (an
optimal pair of numbers of agent processors and server proces-
sors) for the CAS model which minimizes the total processing
time for a given number of processors. To corroborate the analy-
sis, the proposed parallel test generation algorithm is imple-
mented on a network of more than 106 workstations and experi-
mental results for the ISCAS benchmark circuits are presented. It
is shown that the experimental results are very close to the theo-
retical results which confirms the existence of optimal granularity
and optimal scheme which minimizes the total processing time for
the CAS model.

Index Terms—Combinational circuits, client-server model, dis-
tributed systems, fault simulation, granularity, paraliel process-
ing, test generation.

I. INTRODUCTION

THEORETICALLY, it has been shown that the problem of test
generation for logic circuits is NP-hard [1], [2] even for
combinational circuits, and hence it is very difficult to speed
up the test generation process due to backtracking mechanism.
On the other hand, efficient heuristics to speed up test genera-
tion have been proposed [3], [4], [5], but handling the in-
creased logic complexity of VLSI circuits has been severely
limited by the slowness of conventional CAD tools on a gen-
eral purpose computer. Multiprocessing hardware has to be
used to get orders of magnitude speed up for those circuits of
VLSI or ULSI complexity.

There are several types of parallelism inherent in test-
pattern generation: fault parallelism, search parallelism, heu-
ristic parallelism, and topological parallelism [16]. Fault
parallelism refers to dealing with different faults in parallel.
Motohara et al. [7], Patil and Banerjee {12}, and Fujiwara and
Inoue [10] presented their methods of parallel processing for
test generation based on fault parallelism. Search parallelism

Manuscript received Dec. 13, 1993; revised Aug. 3, 1994.

The authors are with the Graduate School of Information Science, Nara
Institute of Science and Technology, Ikoma, Nara 630-01, Japan.
e-mail: fujiwara @is.aist-nara.ac jp.

[EEECS Log Number D95029.

refers to searching different nodes of a decision tree (in a
branch-and-bound search) or to searching different input vec-
tors in parallel. Motohara et al. [7] and Patil and Banerjee [11]
proposed their methods of parallel processing for test genera-
tion based on search parallelism. Heuristic parallelism refers
to dealing with one fault using different heuristics in parallel.
Chandra and Patel [8] reported an approach to heuristic paral-
lelism. Topological parallelism refers to simulating different
subcircuits in parallel. Kramer [6] and Hirose et al. [9] pre-
sented their methods of parallel processing for topological
parallelism.

Client

Server 1

Server 2 Server N

Fig. 1. Architecture of the Client-Server model.

In [10], we presented an approach to parallel test generation
based on fault parallelism in a loosely coupled distributed net-
work of general purpose computers and analyzed theoretically
the effect of the allocation of target faults to processors using a
Client-Server model (CS model) illustrated in Fig. 1. We
showed the existence of the optimal granularity or the optimal
number of target faults allocated to processors which mini-
mizes the total processing time for the CS model. The total
processing time T on the CS model can be expressed by

M
T= ——-(ro+r] M+1+r2mN)(r+—to+th]
m

N

where M, N, and m are the total number of faults of a circuit
under test, the number of processors, and the granularity, re-
spectively, and 7 is the mean (test-generation/fault simulation)
processing time per fault, ro, ry, r, are constants that relate to
test-generation/fault simulation, and ¢, # are constants that
relate to communication between processors [10]. Fig. 2(a)
shows the total processing time versus the number of proces-
sors for the case of M = 10,000, m = 10, 7= 0.5, r, = 0.0001,
ry = 0.00001, r, = 0.0005, 1, = 0.2, and #; = 0.2. The parallel
test generation system [10] was implemented on a network of
workstations using the FAN algorithm [4]. Fig. 2(b) gives a
curve of total processing time versus the number of processors
for the experimental result using the ISCAS89 benchmark cir-
cuit s15850 modified into a combinational circuit with full-

1

1045-9219/95$04.00 © 1995 IEEE

678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 7, JULY 1995

scan design. From Figs. 2(a) and 2(b) we can see that there
exists an optimal number of processors which minimizes the
total processing time for the CS model. This implies, even if
the number of processors is increased beyond the optimal
number for the CS model, higher speedups cannot be achieved.

Total Processing Time

350
300
250
200

Tmin E

50

5 10 15\ 20 25 30 35 40

Number of Processors

Total Processing Time
(sec)

2500
2000
1500
1000 |

500
min—__|

5 10 _—15 20 25

Fig. 2. Total processing time versus number of processors. (a) Analysis. (b)
Experimental result for circuit s15850.

In this paper, in order to get a more efficient scheme than
the CS model of [10], we propose another model called a Cli-
ent-Agent-Server model (CAS model) which can decrease the
work load of the client by adding agent processors to the CS
model. The CAS model proposed here is an extension of the
CS model. In other words, the CS model can be regarded as a
special case of the CAS model that has only one dummy agent
processor. We extend here the resuit of [10] to the CAS model.
In [10], we considered the optimal granularity problem for the
CS model. The granularity of the CS model is defined as the
number of faults transferred from the client to a server. In case
of the CAS model, the granularity is defined as a pair of two
numbers; one is the number of faults transferred from the cli-
ent to an agent and the other is the number of faults transferred
from an agent to a server during each communication. The
optimal granularity problem for the CAS model is thus to find

a pair of these two numbers which minimizes the total process-
ing time. In this paper we consider this optimal granularity
problem for the CAS model. There is another important prob-
lem, optimal scheme problem. The scheme of the CAS model
is determined by the number of agents and the number of serv-
ers per agent. So, the optimal scheme problem is to find a pair
of these two numbers which minimizes the total processing
time. In [10], we have not considered the optimal scheme
problem for the CS model. Here we consider the optimal
scheme problem for the CAS model including the CS model.
We first formulate the problem of test generation for the
CAS model and derive the equation of the total processing
time as a function of several parameters, including the granu-
larity and the scheme of the CAS model. Then we analyze the
equation to solve both of the problems of optimal granularity
and optimal scheme. We analyze the effect of the number of
faults allocated to a processor to find the optimal granularity in
both cases of static and dynamic task allocation. We analyze
the relationship between the number of processors and the total
processing time to find the optimal scheme which minimizes
the total processing time for a given number of processors.
From the analysis, it is shown that the CAS model can reduce
the total processing time over the CS model and that there ex-
ists an optimal scheme (an optimal pair of numbers of agent
processors and server processors) for the CAS model which
minimizes the total processing time for a given number of
processors. To corroborate the analysis, the proposed parallel
test generation algorithm is implemented on a network of more
than 100 workstations. We present experimental results for the
ISCAS benchmark circuits. It is shown that the experimental
results are very close to the theoretical results which confirms
the existence of optimal granularity and optimal scheme that
minimizes the total processing time for the CAS model.

II. ARCHITECTURE OF THE
CLIENT-AGENT-SERVER MODEL

The architecture of our loosely coupled multiple processor
systems is illustrated in Fig. 3. This system is derived by in-
serting agent processors between a client and servers of the CS
model. We call it a CAS model. This CAS model has a logical
hierarchy such that N, agents are connected to the client, and
N, servers are connected to each agent, though all processors
are physically connected to a single communication network.
The client requests an agent to execute a task and to return the
result. An agent partitions a task into subtasks and distributes
each subtask to a server connected to the agent. When a server
finishes its assigned task, it sends the result to the agent and
requests a new task. After an agent finishes the task from the
client, it sends the result to the client and requests a new task.
The client saves the result and sends a new task to the agent.
This process is repeated until all tasks are processed.

Here if we regard the task as test generation, the above
process can be redescribed as follows: The client extracts a
number of faults from the fault table as a set of target faults
and sends the faults to an agent. When an agent receives the
target faults from the client, the agent sends a subset of the

FUJIWARA AND INOUE: OPTIMAL GRANULARITY AND SCHEME OF PARALLEL TEST GENERATION IN A DISTRIBUTED SYSTEM 679

target faults to a server connected to the agent as a set of target
faults for the server. A server which receives the target faults
generates a test-pattern for one of the target faults and finds
out all detected faults by the test pattern by performing simu-
lation for all faults in the circuit, not just those in the set of
target faults. The server repeats test-pattern generation and
fault simulation until all the target faults are processed and
then sends the result to the agent. After receiving the result
from the server, the agent saves it in its own storage. The agent
then sends a new set of target faults which have not yet been
processed by any server of the agent and sends it to the server.
After all the target faults assigned to the agent are processed,
the agent sends the results to the client and requests a new set
of target faults. The client updates the fault table and sends
new target faults to the agent. This process continues until all
faults in the fault table are processed.

I ServerN, II anam

Server 11 |....

Server IN :l

ServerN N

Fig. 3. Architecture of the Client-Agent-Server model.

III. FORMULATION OF THE PROBLEM

We formulate the test generation problem for the CAS model.
It consists of one client, N, agents, and N; servers per agent. Let
the kth server connected to the jth agent A; be server Sy. A proc-
ess of test-pattern generation for a fault f; is called a process for
fault ;. The parameters used here are defined as follows:

M: the total number of faults of a given circuit.

T the processing time of server Sj, for fault f; .

Oy the probability that process for fault f; is allocated to
server Sj.

Aq;: the probability that agent A; communicates to the cli-
ent after process for fault f; .
Agu: the probability that server Sj communicates to agent

Ajafter process for fault f; .

T,. the mean communication time which includes waiting
time due to contention and data transfer time between
the client and agents.

7. the mean communication time which includes waiting
time due to contention and data transfer time between
an agent A; and servers.

Then, the average time necessary to complete all processes
allocated to server Sy is
M
T, = zarjk("y‘k F Ao Tew + AgiTes) - 2
i=]
The time necessary to complete all processes is defined by the
maximum of Tj:

T = max { Ty} (3)

Here, we consider two problems: optimal granularity
problem and optimal scheme problem. The granularity is the
grain size of target faults transferred between two processors.
In case of the CAS model, the granularity is a pair of two
numbers (m,, m;) where m, is the number of faults transferred
from the client to an agent and m; is the number of faults trans-
ferred from an agent to a server during each communication.
Note that these values m, and m, will vary in dynamic task
allocation strategy. The optimal granularity problem is thus to
find a pair of two numbers (m,, m;) which minimizes the proc-
essing time T of (3). In other words, it is to find a task alloca-
tion schedule which minimizes 7. On the other hand, the
scheme of the CAS model is determined by the number of
agents, N,, and the number of servers per agent, N;. So, the
optimal scheme problem is to find a pair of two numbers
(Ng, N,) which minimizes the processing time 7.

IV. OPTIMAL GRANULARITY WITH
STATIC TASK ALLOCATION

First we consider static task allocation of faults where the
numbers of target faults from the client to an agent and from
an agent to a server are always constant, respectively.

A. Assumption of Homogeneous Problem

To obtain the minimum processing time on the CAS model,
it is important to equalize the load of each server. Here, we
shall assume a homogeneous case as follows:

1) All servers are uniform, i.e.,

Tik=T 4)
for all faults f; and servers Sj.

2) For any fault f; the probability that fault f; is allocated to a
server Sy is independent of the server Sy, i.e.,

O = 6, (5)

for all faults f; and servers Sj.

B. Communication Probability: A, A

Let m, be the number of target faults transferred from the
client to an agent A; during each communication. Suppose that
fault f; is in the set of m, target faults allocated to the agent A;.
Then the probability that the agent A; communicates to the
client after process for fault f; is

1
A’aij = ;1— (6)

a
since such a communication occurs only once for those m,, faults.
Let mg be the number of target faults transferred from an
agent A; to a server Sy during each communication. Suppose that
fault f; is in the set of m; target faults allocated to the server Sy
from the agent A;. Then the probability that the server Sy com-
municates to the agent A; after process for fault f; is

1
l.vijk = Q)
m

s

since such a communication occurs only once for those m; faults.

680

C. Probability of Process Allocation: &

Suppose that the client requests an agent to process 1, tar-
get faults. The agent extracts m; fauits from the m, target faults
and requests a server to process the m; target faults. Note that
m, < m, . The server generates a test pattern for one of the m,
faults and seeks all the faults detectable by the generated test
pattern by performing fault simulation for all faults in the cir-
cuit, not just those in the set of m; target faults. It repeats test-
pattern generation and fault simulation until all target faults are
processed. Let pm, be the number of faults that are newly
found to be detectable or redundant at completion of of test
generation for m, target faults. Let us call those faults newly
processed faults.

Let us define the ratio of newly processed faults to target
faults:

_ number of newly processed faults per server (prm,)

number of target faults per server (rm,) ®
Note that this ratio will decrease as the number of processed
faults increases. Here, let p; be the ratio when fault f; is
processed.

During each iteration of the server process, m; target faults
are processed by the server and pm; faults are newly found to
be either detectable or redundant through both test-pattern
generation and fault simulation. Some faults are found to be
either detectable or redundant only by test-pattern generation
and other faults are found to be detectable after fault simula-
tion. Hence, the probability that fault f; is by some server is

1

pimg Pi
where p; is the ratio of newly processed faults to target faults
when fault f; is processed.

On the other hand, the probability that fault f; is processed
by some server is defined by

m,

9

=2

B

N.T

25,7,(.

Jj=1k=1

(10)

Therefore, we have
N hi

1

O =—.
DI
From the assumption that & = &, we have

N, N, N, N,
2260’6 = 2261 = NaNsai *
=1 k=1

j=1 k=1

=

(1n

N,
im] k=

Jj=1

12)

Hence, we have

1
6., =0 =——. 13
o ' NaNspi ()

D. Ratio of Newly Processed Faults to Target Faults: p

The number of newly processed faults will quickly decrease
as the number of processed faults increases. Further, the num-
ber of newly processed faults per fault will decrease as the
number of target faults per server and the number of servers

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 7, JULY 1995

increase. In [10], we assumed the ratio of newly processed
faults to target faults for the CS model to be

1

—_— (14
ry+nrx+rmN

px) =
where m is the number of target faults to a server per commu-
nication, N is the number of servers, x is the number of proc-
essed faults, and 7, r,, and r, are constants. In this expression,
the factor 1/ (ro + rix) expresses the effect of fault simulation,
and the factor r;mN accounts for the decrease ratio of newly
processed faults due to overlapped processing.

About the factor for decrease ratio of newly processed faults
on the CAS model, we have to consider the overlapped proc-
essing among agents, in addition to the overlapped processing
among servers. After receiving the list of the result from a
server, an agent renews its own fault table, which is the copy
from the client. Since multiple agents are working simultane-
ously, some agents may save the same faults detected by serv-
ers. These overlapped processes will increase and hence p; will
decrease as the number of target faults per agent (m,) and the
number of agents (N,) increase. By introducing this factor
(m.N,) into (14), we have

1
rptnx+rm N +rm,N,

plx) = 15)
where ro, 1, r» , and r3 are constants. In the above expression,
the factor rsm,N, accounts for the decrease ratio due to the
overlapped processing among agents.

Suppose that the number of processed faults is i when fault
fmi is processed where T is a permutation of Iy = {1, 2, ..., M}.
Then, from (15), the ratio of newly processed faults when fault
S 18 processed can be expressed as

1
rp+ni+rm N +rm, N,

Priy = (16)

E. Communication Time: 7., 7.
Here we have the following assumptions:

1) The size of data (fault table) transferred between the client
and an agent or between an agent and a server is fixed, and
hence, the data transfer time during communication between
the client and agents or between an agent and servers is a con-
stant.

2) All agents communicate with the client through a single
communication network. All servers also communicate with
respective agents through the same network. Agents and serv-
ers cannot consequently communicate while one of the other
processors communicates. Hence, the waiting time during
communication between the client and an agent or between an
agent and a server is proportional to the number of agents plus
the total number of servers, i.e., N, + N.N.

3) After receiving the result from an agent, the client updates
the fault table and sends a new set of target faults. This work
load increases in proportion to the number of agents, N,.
Hence, the waiting time during working of the client is pro-
portional to the N,, and the work load of an agent increases in
proportion to the number of the servers connected to the agent,

FUJIWARA AND INOUE: OPTIMAL GRANULARITY AND SCHEME OF PARALLEL TEST GENERATION IN A DISTRIBUTED SYSTEM 681

N,. Hence, the waiting time during working of an agent is pro-
portional to the N;.

From the above assumptions, we have

Tea = tao + talNa(N.r"' 1)+tu2Na (17)
where t,, ta, and t,; are constants. And we have
Tes = L + aN(N; + 1) + 1N, (18)

where ty, t;1, and t;; are constants.
Here we assume to = to=lp, ta=ta=t, and tn =t = 1.
Then we have
Ta=ty+ ENJN: + 1) + 6N, (19)
and
Tos=1to + HN,(N; + 1) + N, (20)

where ¢, t;, and ¢, are constants.

F. Total Processing Time: T

Let P be the set of all permutations of 1. There is a one-to-
one correspondence between permutations of I, and sequences
of faults. The total number of sequences is M!.

From (2), (13), (16), (19), and (20), we can derive the aver-
age of total processing time for all permutations:

Mo T T
ZZN ~ (r0+r1i+r2msNx+r3maNa)(r,.+ﬁ+&J
5

T = nePi=1 " @ Mg ms
M!
2n
On the other hand we have
M M M
NS it = il (MDY 1 | (22)
rePi=l i=1 i=1
Substituting the mean processing time for each fault:
1 M
T=—)T,; 23
m 21, ; (23)
into the right side of (22), we have
M M
Y Nitg = D iM!T). (24)

rePi=1 i=1

Hence, from (21) and (24) we have

L . Tea , Fos
T:Z—(r0+rlt+r2mst+r3maNa) T+ +
= NN,

mu ms
(25)
M+1
= L(ro +1——+nrmN, +r3maNaJ T+£ﬂ+—r—i .
NaNs 2 m, mg
(26)

From (26) we can see that if we can reduce the processing
time for each fault (7) and/or the communication time (7, and
7.s), we can decrease the total processing time (7). We can
also observe that as the ry, r;, 2, and r3;, decrease, the total
processing time decreases. This is because the term

[M+1
oth

accounts for the decrease ratio of newly processed faults due
to the overlapped processing among servers and agents as
mentioned earlier (see (16)). If we can reduce this type of
overlapped processing, we can increase the effect of fault
simulation and hence decrease the total processing time. Fur-
thermore, since the total processing time 7 is a function of
granularity (m, and m,) and scheme (N, and N;) in (26), we can
reduce the total processing time by choosing appropriate val-
ues for the granularity and scheme. In the following section we
shall consider the effect of scheme or the numbers of agents
and servers per agent. Here we consider the effect of granular-
ity (m, and m;)
In (26), partially differentiating T by m,, we have

+r,m.N, +r3maNa)

' M+1
31' M rw r0+rl +r3maNa Tcs
= LN T+ |~ 3
am: NaNs m, mg
@7
Then, we have
2
M M
Tomin = JnNT + (r0+r1 +1+r3m,‘Nﬂ) T+Tﬂ
NN, m,
(28)
when
((r0+rl M+l+r3muNa)Tcx
(29)

_ 2
mxopt - T
nNy| T+
mﬂ

Partially differentiating Ty, by m,, we have

M+l
Rtn—|Ta

ymin _ _M 1+ [RN T, BN, T- z2
am, NN, M+1 Tea m?
r0+r,72 +rm,N, ‘r+m—
a

(30)
Then, we have the minimum of T

2
M M+1
Tpin = m(\/rzmru + BN, 7, + (ro +r 3 }r)

(31)
when
Maopt (32)
and
m:opt ’ (3 3)

682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 7, JULY 1995

Number of target
faults per agent
Moot per agent m,
Numter of target
faults per server m g

Fig. 4. Total processing time versus granularity: analysis.

which is derived from (29) by substituting m, in the expression
for Myop-

The analysis so far tries to take into account the existence of
an optimal granularity or a pair of two numbers (m, and m,)
which minimizes the total processing time T. To see the char-
acteristic of (31), (32), and (33), consider Fig. 4 which shows
the 3D graph of the total processing time 7 as a function of the
number of target faults for an agent, m,, and the number of
target faults for a server, m;, for the case of M =10,000, N, =
4, N, =8, 7=0.5, r, = 0.0001, r, = 0.00001, r, = 0.0005, r3 =
0.00004, t, = 0.2, t,=0.2, and t, = 0.5. From Fig. 4 we can see
that there exists an optimal number of target faults for an
agent, My, and an optimal number of target faults for a
Server, Mo, Which minimize the total processing time. These
equations, (31), (32), and (33) for the CAS model, are exten-
sions of the equation for the CS model of [10]. Hence the CAS
model is an extension of the CS model, i.e., the CS model can
be regarded as a special case of the CAS model that has only
one dummy agent processor.

G. Experimental Results

The parallel test generation system of the CAS model was
implemented on a network (Ethernet) of 140 workstations
(SUN4/LCs). The FAN algorithm [4] was used as a test-
pattern generator. Figs. 5 (a), (b), and (c) give the 3D graphs
of the total processing time T as a function of the number of
target faults for an agent, m,, and the number of target faults
for a server, m,, for circuits $9234, s13207, and 515850, re-
spectively, of the ISCAS’89 benchmark circuits [15] modified
into combinational circuits by assuming full-scan design. Cir-
cuits $9234, s13207, and s15850 have 9234, 13207, and 15850
signal lines, respectively. In these figures, we can see that the
shape of the graphs coincides closely with that of
Fig. 4 obtained from the above analysis and there exists an
optimal granularity pair which minimizes the total processing
time. The optimal points are (m, = 100, m, = 25), (m, = 100,
m, = 15), and (m, = 100, m; = 15) for circuits $9234, s13207
and s15850, respectively.

Total

processing
time T (sec)

Number of target
faults per agent

Msopt =25

Number of target 100

faults per server

Circuit: §13207

Na =4
Ns =8

Number of target
faults per agent

Total

processing
time T (sec)

500 Number of target
faults per agent

Number of target
faults per server 100

©

Fig. 5. Total processing time versus granularity: experimental results.
(a) Circuit $9234. (b) Circuit s13207. (c) Circuit s15850.

V. OPTIMAL GRANULARITY WITH
DYNAMIC TASK ALLOCATION

In this section we shall consider dynamic task allocation of
faults where the numbers of target faults for an agent and for a
server will vary as time goes on.

FUJIWARA AND INOUE: OPTIMAL GRANULARITY AND SCHEME OF PARALLEL TEST GENERATION IN A DISTRIBUTED SYSTEM 683

Here, we counsider again the homogeneous case; i.e., Ty = T
and &, = & for all faults f; and servers Sy. Suppose that the num-
ber of processed faults is i when fault fz; is processed where 7 is
a permutation of Iyy = {1, 2, ..., M}. Let m,; and my; be the num-
bers of target faults allocated to an agent and a server, respec-
tively, when ¢ faults have been processed by all servers till then.
Then the average of total processing time T can be obtained by
replacing m, by m,; and m, by my; in (21) as follows:

& 1 T T

E E ——(ry +hi+rmgN +rm N, T+ +—-<
N,N ’ m,. m,

T = nePi=1 "a’’s ai Si

M!
(34)

M

1
:zNN

i=1 ValVs

. . T T ..
(rp+nRi+nmgN +rm N,)| T+—C+—
m my;

at

(35)

Partially differentiating the above expression by m,;, we have

or _ M PN, T+‘ri_(r0+r1i+r3rznm-Nu)Tm .
&"1 N’(‘NX m

si

St ai

(36)

Then, we have

2

M
1 4 p
(37
when
- (o +ri+rm, N,)T, (38)

my T
RNy T+
mu

Partially differentiating Tymin by m,;, we have

al?\min - M 1+ [rZNxTcs

[r3Na1:—
. T my;
J(ro +r|t+r3mm-Na)(‘r+m”‘J al

ai

(39)

Then, we have the minimum of 7 for dynamic allocation:

M 1 : 5
Tdynamic = 2 N N (\/rZNxTcx +\/r3NuTca +J(r0+ﬁl)f)
=1 5

a

(40)
when
m, = f(r0+r,i)1'w @1
nRN,T
and
(g +nrDT .
my = |————= for all i. (42)
nNT

From (41) and (42), the optimal granularity (the optimal
size of target faults) of time can be expressed as

wmmﬂ
D% |

m, () = ’M 43)
nN,T
and
o) = [(@4)
‘ nN,T

where x, is the total number of faults processed by all servers
till the time ¢. Hence, the best performance or the test genera-
tion with the minimum computation time will be achieved if
the dynamic task allocation is scheduled in accordance with
the above expression as follows: The client counts up the total
number x, of processed faults till now (at time ¢), calculates the
number my(t) of target faults from (43), and then allocates
m,(t) target faults with the number x; to an agent. The agent
calculates the number m,(t) of target faults from (44), picks the
my(t) target faults out of the m,(z) target faults, and then allo-
cates the my(t) target faults to an idle server. Note that although
(43) and (44) represent continuous functions, m,(t) and my(t)
are respectively defined as integers.

Let us consider next how much reduction of computation
time will be achieved by dynamic task allocation compared
with static one. The minimum of 7 for static allocation is

MH)“
T .
2]

(45)

M
Taic = N—M

a

(‘\/rZNrTcx +‘\/r3Nutca + (r0+rl

Hence, the difference between T and Tyynamic iS

Wi N, + N7,) & Ml
T T3 [T e

(46)
This equation is always positive for M > 1, that is, the dynamic
task allocation is always more efficient than the static one.
This implies that the dynamic task allocation can be better than

the static one though the dynamic case requires extra calcula-
tion of m,(t) and my(t) which vary as time goes on.

T,

static _Tdynamic =

i=1

VI. OPTIMAL SCHEME FOR
PARALLEL TEST GENERATION

So far, we have considered the optimal granularity problem of
parallel test generation on the CAS model. Here, we consider the
optimal scheme problem, i.e., the relation between the number of
processors and the total processing time, and show the existence
of an optimal scheme for a given number of processors.

The equation (26) of the total processing time T can be also
expressed as

M
T= —(CaONa tCa)(CuZNu +cu3)

NN 47)
where
Cyo = I3My,
1
Cq = hp+h——+rpmN,,

1 1 t
Car = [—+—}, (N, +1)+—2,
mﬂ mS mﬂ

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 7, JULY 1995

and
t
Cu3 = T+L_l_+._l_jt0 +L s - (48)
mll mS m.\'
Partially differentiating 7 by N,, we have
a M C1Ca3
=—V\e¢,6C,m— =F 49
N, NS(”O 2 N2 “9
Then, we have the minimum of 7,
M 2
Timin = _(V €a0Ca3 +Vcalcr12) (50)
NX
when
€, €
Mg = 25 G
Ca0Ca2
The expression (26) can be also expressed as
M
T= W(C“‘ON: +C“)(C52Ns +Cs3) (52)
where
Cso = MMy,
M+1
Cxl = r0+rl T+‘+r3maNu ’
1 t
gy = (—L+—)tha +2-
m, my my
and
1 1 t,
Cpy = T+ —+— ((lp +H N,)+—=N,. (53)
’ m(l mK ma
Partially differentiating 7 by N;, we have
M X
I M e - S, (54)
oN, N, N;
Then, we have the minimum of 7,
M 2
Tsmin = N (‘V C50Cs3 +‘\/Cslc.92) (55)
a
when
cC
Noog = [(56)
C50Cs2

To see the characteristic of (47), (50), and (55), consider
Fig. 6 (a) which shows the 3D graph of the total processing
time, 7, as a function of the number of servers per agent, N;,
and the number of agents, N,, i.e., T = T(N;, N,), for the case of
M = 10,000, m, = 800, m, = 15, T = 0.5, ro = 0.0001, r, =
0.00001, r; = 0.0005, r; = 0.00004, 1, = 0.2, , =02, and £, =
0.5. In this figure, there exists an optimal point (N; = 13, N, =
5) which minimizes the total processing time among all
schemes obtained by varying the numbers of Ny and N,. The
CAS model is an extension of the CS model, i.e., the CS model
can be regarded as a special case of the CAS model that has
only one dummy agent processor. Hence, in Fig. 6(a) the CS
model corresponds to the curve when N, = 1. Obviously, the

M = 10000

my = 800

mg = 15
=05
7,,=0.0001
n= 0.00001
= 0.0005
r* =0.00004
3

=02

l‘= 02

1= 05

per agent Ny

Total) ..0’.::::':::."..'.' E:Eilggm
e \‘.k\\\\‘m%c. ‘ i
175 “““&‘\‘;!5:":"..' :; i 8%'5804
- ‘\" Ny ,'.t.',?
" “ |I ,'.,',' B
il
Q ~‘\““l 1'.

N1 100

Total number of processors Ny,
(b)

Fig. 6. Total processing time versus number of processors: analysis. (a) T(Ns,
Nu)- (b) T(Nmml, Nn)4

curve of N, = 1 is worse than others and hence the CS model is
worse than the CAS model.
The total number of processors on the CAS model is

Ny =1+N,+N, N =1+ N, (N, +1). (57)

Fig. 6 (b) shows the 3D graph of the total processing time, 7,
as a function of the total number of processors, Ny, and the
number of agents, N,, i.e., T = T(Ny, Na) for the above case.
In this figure, the optimal point is (N = 71, N, = 5). Simi-
larly as mentioned above, the CS model corresponds to the
curve when N, = 1 which is worse than others as seen in Fig. 6
(b). The curves go down as N, increases, and it becomes
minimum when N, = 5. Hence, we can easily see that the CS
model which is the CAS model with N, = 1 is generally worse
than the CAS model, i.e., the new CAS model can reduce the
overall processing time over the previous CS model.

A. Experimental Results

The experimental results for ISCAS’89 benchmark circuits
are given in Figs. 7 and 8. Fig. 7 shows the 3D graphs of the
total processing time, T, as a function of the number of servers
per agent, N,, and the number of agents, N,, for ISCAS’89
benchmark circuits $9234 and s15850. Circuits 9234 and

FUJIWARA AND INOUE: OPTIMAL GRANULARITY AND SCHEME OF PARALLEL TEST GENERATION IN A DISTRIBUTED SYSTEM

Circuit: 59234
mg = 800
mg = 15

Number of agents N,

Number of servers 201
per agent Ng

(a)

685
Total
processing
time T (sec) Circuit: 515850
1000
m, = 800
800 mg =15
600
400
200
Number of agents N,
Number of servers 1
per agent Ng 20

(b)

Fig. 7. Total processing time versus number of processors: experimental results. (a) Circuit $9234. (b) Circuit s15850.

Total
processing > Circuit: $9234
time T (sec)
my = 800
600 mg = 15
400
200
0
0 a9 ” 3 4
2
60 801 Number of agents Ny
Total pumber of processors Nyo,1
(@)
Toul 1000° ircuit:
processing > Circuit: s15850
time T (sec) - 800
mg = 15
600
400
200
0
0 4
? w0 z
801

Number of agents Ny
Total number of processors Nygqa1

©)

Total —
pmces;i.(ng X Circuit: 513207
time sec,
mg = 800
me =15
60 801 2 Number of agents Ny
Total number of processors Niaea
)
Toul 3000 >
processing -
time T (sec) Circuit: 538584
my = 800
2000 mg = 15
1000
0
® 207 s 4
€0 801 2 Number of agents Ny
Total number of processors Ny,
(d)

Fig. 8. Total processing time versus number of processors: experimental results. (a) Circuit §$9234. (b) Circuit s13207. (¢) Circuit s15850. (d) Circuit s38584.

s15850 have 9234 and 15850 signal lines, respectively. As
seen in Fig. 7, for the direction of the axis of N, the curves go
down and then go up slightly, as the number of servers per
agent, N,, increases. For the direction of the axis of N,, the
curves go down. However, due to the lack of the number of
processors, we cannot show here that the curves go up as the
number of agents, N,, increases.

Fig. 8 shows the 3D graphs of the total processing time, 7, as
a function of the total number of processors, Ny, and the num-

ber of agents, N,, for four circuits $9234, s13207, s15850, and
s388584. In Fig. 8, we can see that as the total number of proc-
essors, Ny, increases, the curves go down and then go up
slightly. However, due to the lack of the number of processors,
we cannot also show here that the curves go up as the number of
agents, N, increases.

In these figures, we can see that, for the interval with a
small number of agents, all the shapes of the 3D graphs in
Figs. 7 and 8 generally coincide with those of Fig. 6 obtained

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 7, JULY 1995

from the above analysis. Hence we can expect that there exists
an optimal number of processors or an optimal scheme which
minimizes the total processing time.

VII. CONCLUSIONS

In this paper we presented an approach to parallel process-
ing based on fault parallelism for test generation in a loosely
coupled distributed network of general-purpose processors. In
order to get a more efficient scheme than the CS model, we
proposed another model called a CAS model which can de-
crease the work load of the client by adding agent processors
to the CS model.

We considered two problems for the CAS model: optimal
granularity problem and optimal scheme problem. We formu-
lated the problem of test generation for the CAS model and
analyzed the effect of the number of faults allocated to a proc-
essor each time to find the optimal granularity in both cases of
static and dynamic task allocation. We analyzed the relation-
ship between the number of processors and the total processing
time and showed that there exists an optimal scheme for the
CAS model which minimizes the total processing time for a
given number of processors. We showed the new model (CAS
model) can reduce the overall processing time over the previ-
ous model (CS model).

We presented experimental results based on an implemen-
tation of our CAS model on a network of more than 100
workstations using the ISCAS’89 benchmark circuits. The
experimental results are very close to the theoretical results
which confirms the existence of optimal granularity and opti-
mal scheme that minimizes the total processing time for
benchmark circuits.

ACKNOWLEDGMENT

The authors would like to thank Tomonori Yonezawa for
his technical help and discussions on the experimental results.

REFERENCES

[1] O.H. Ibarra and S.K. Sahni, “Polynomially complete fault detection
problems,” IEEE Trans. Computers, vol. 24, pp. 242-249, Mar. 1975.

[2] H. Fujiwara and S. Toida, “The complexity of fault detection problems
for combinational logic circuits,” JEEE Trans. Computers, vol. 31, pp.
555-560, June 1982.

[3] P. Goel, “An implicit enumeration algorithm to generate tests for com-
binational logic circuits,” IEEE Trans. Computers, vol. 30, pp. 215-222,
Mar. 1981.

[4]1 H. Fujiwara and T. Shimono, “On the acceleration of test pattern gen-

eration algorithms,” IEEE Trans. Computers, vol. 32, pp. 1137-1144,

Dec. 1983.

M.H. Schulz and E. Auth, “Advanced automatic test pattern generation

and redundancy identification techniques,” Dig. Papers, FTCS-18, pp.

30-35, June 1988.

[6] G.A. Kramer, “Employing massive parallelism in digital ATPG algo-

rithm,” Proc. 1983 Int’l Test Conf., pp. 108-114, 1983.

A. Motohara, K. Nishimura, H. Fujiwara, and I. Shirakawa, “A parallel

scheme for test pattern generation,” Proc. IEEE Int’l Conf. Computer-

Aided Design, pp.156-159, 1986.

[5

[}

(7

—

[8] S.J. Chandra and J.H. Patel, “Test generation in a parallel processing envi-
ronment,” Proc. IEEE Int'l Conf. Computer Design, pp. 11-14, 1988.

[9] F. Hirose, K. Takayama, and N. Kawato, “A method to generate tests for
combinational logic circuits using an ultra high speed logic simulator,”
Proc. 1988 Int’l Test Conf., pp. 102-107, 1988.

[10] H. Fujiwara and T. Inoue, “Optimal granularity of test generation in a
distributed system,” IEEE Trans. Computer-Aided Design, vol. 9, no. 8,
pp. 885-892, Aug. 1990.

{11} S. Patil and P. Banerjee, “A parallel branch-and-bound algorithm for

test generation,” IEEE Trans. Computer-Aided Design, vol. 9, no. 3, pp.

313-322, Mar. 1990.

S. Patil and P. Banerjee, “Performance trade-offs in a parallel test gen-

eration/fanlt simulation environment,” IEEE Trans. Computer-Aided

Design, vol. 10, no. 12, pp. 1542-1558, Dec. 1991.

S. Patil, P. Banerjee, and J.H. Patel, “Parallel test generation for se-

quential circuits on general-purpose multiprocessors,” Proc. 28th

ACM/IEEE Design Automation Conf., pp.155-159, 1991.

[14] S. Shimojo, H. Miyahara, and K. Takashima, “‘Process assignment on

multi-processor with communication contentions,” Trans. {ECE (in

Japanese) vol. J68-D, no. 5, pp. 1049-1056, Mar. 1988.

F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of

sequential benchmark circuits,” Proc. Int’l Symp. Circuits and Systems,

pp. 1929-1934, 1989.

R.H. Klenke, R.D. Williams, and J.H. Aylor, “Parallel-processing tech-

niques for automatic test pattern generation,” IEEE Computer, pp. 71-

84, Jan. 1992.

(12]

(13]

[15

[l

(ie]

Hideo Fujiwara was bomn in Nara, Japan. He re-
ceived his BE, ME, and PhD degrees in electronic
engineering from Osaka University, Osaka, Japan,
in 1969, 1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985, Meiji Uni-
versity from 1985 to 1993, and joined Nara Institute
of Science and Technology in 1993. In 1982 he was
a Visiting Research Assistant Professor at the Uni-
versity of Waterloo, Canada, and in 1984 he was a
Visiting Associate Professor at McGill University,
Canada. Presently he is a professor at the Graduate
School of Information Science, Nara Institute of Science and Technology,
Japan.

Prof. Fujiwara’s research interests are in the design and test of computers,
including design for testability, built-in self-test, test pattern generation, fault
simulation, computational complexity, parallel processing, neural networks,
and expert systems for design and test. He is the author of Logic Testing and
Design for Testability (MIT Press, 1985). He is a fellow of the IEEE as well
as a member of the Institute of Electronics, Information and Communication
Engineers of Japan, and the Information Processing Society of Japan. He
received the IECE Young Engineer Award in 1977 and the IEEE Computer
Society Certificate of Appreciation Award in 1991.

Tomoo Inoue was bom in Tokyo, Japan. He re-
ceived his BE degree in electric and communication
engineering and his ME degree in electrical engi-
neering from Meiji University, Kawasaki, Japan, in
1988 and 1990, respectively. From 1990 to 1992, he
was engaged in the research and development of
microprocessors at Matsushita Electric Industrial
Co. Ltd., Osaka, Japan. Since 1993 he has been a
research associate at the Graduate School of Infor-
mation Science, Nara Institute of Science and Tech-
nology, Japan.

A

His research interests include test generation, design for testability, and
parallel processing. Mr. Inoue is a member of IEEE, the Information Process-
ing Society of Japan, and the Institute of Electronics, Information and Com-
munication Engineers of Japan.

