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SUMMARY The medial axis transform (MAT) is an image
representation scheme. For a binary image, the MAT is defined as
a set of upright maximal squares which consist of pixels of value 1
entirely. The MAT plays an important role in image understand-
ing. This paper presents a parallel algorithm for computing the
MAT of an n X n binary image. We show that the algorithm
can be performed in O(logn) time using n?/logn processors on
the EREW PRAM and in O(loglogn) time using n?/loglogn
processors on the common CRCW PRAM. We also show that
the algorithm can be performed in O(n?/p? +n) time onap X p
mesh and in O(n?/p? 4+ (nlogp)/p) time on a p? processor hy-
percube (for 1 £ p £ n). The algorithm is cost optimal on the
PRAMs, on the mesh (for 1 < p £ /n) and on the hypercube
(for 1 £ p < n/logn).

key words:  parallel algorithm, image processing, medlal axis
transform, PRAM, mesh, hypercube

1. Introduction

The medial axis transform (MAT) is an image repre-
sentation scheme proposed by Blum[2]. For a digital
binary image, the MAT problem is defined as a prob-
lem to find all upright (also called rectilinear or iso-
oriented) maximal squares, which consist of pixels of
value 1 entirely*. The MAT plays an important role in
image understanding[12].

For computing the MAT of an n X n binary image,
an O(kn?) time sequential algorithm was presented by
Vo[14], where k is the longest side length of upright
maximal squares in the MAT. A simple O(n?) time se-
quential algorithm was presented by Stout[13], which is
time optimal since the trivial lower bound of the MAT
problem is Q(n?).

Many parallel algorithms were also presented. In
general, the efficiency of parallel algorithms is measured
by the running time and the number of processors. The
cost of a parallel algorithm is defined as the product of
the running time and the number of processors of the
algorithm. Also a parallel algorithm is called cost opti-
mal if its cost is equal to the lower bound of sequential
time for the problem. Finding fast cost optimal parallel
algorithms is a fundamental goal in parallel computa-
tion research.

Manuscript received December 20, 1995.

Manuscript revised March 20, 1996.

TThe authors are with the Graduate School of Infor-
mation Science, Nara Institute of Science and Technology,
Tkoma-shi, 630—-01 Japan.

and Hideo FUJITWARA', Members

Chandran and Mount[4] presented a parallel al-
gorithm that runs in O(lognloglogn) time using n?
processors on the CREW PRAM. However Kim[8§]
pointed out that the algorithm has some errors. Chan-
dran et al.[3] presented an algorithm that runs in O(n)
time using n processors on the CREW PRAM. Their
algorithm is cost optimal. The algorithm can be mod-
ified easily to run in O(n?/p) time on the p x p mesh
(1 £ p £ n). Jenq and Sahni[6] developed an algo-
rithm that runs in O(logn) time using n? processors on
the CREW PRAM. They also showed that their algo-
rithm can be mapped on an n? processor hypercube so
that it runs in O(log? n) time. Kim [8] presented a fast
cost optimal algorithm. The algorithm runs in O(logn)
time using n?/logn processors on the EREW PRAM.

In this paper, we present a parallel algorithm for
computing the MAT. We show that the algorithm can
be performed in O(logn) time using n?/logn proces-
sors on the EREW PRAM and in O(loglogn) time
using n?/loglogn processors on the common CRCW
PRAM. We also show that the algorithm can be per-
formed in O(n?/p? + n) time on a p x p mesh and in
O(n?/p*+(nlogp)/p) time on a p? processor hypercube
(for 1 £ p £ n). The algorithm is cost optimal on the
PRAMs, on the mesh (for 1 < p < 4/n) and on the
hypercube (for 1 < p < n/logn).

Results of our algorithm are comparable to the re-
sult of Kim’s algorithm[8] on the EREW PRAM. In
Kim’s algorithm, not only sorting, merging and prefix
operations but an algorithm for the all tallest neigh-
bors problem [7] are used. In our algorithm, we mainly
use two prefix minima operations. Therefore our algo-
rithm is much simpler. Furthermore, prefix operations
are basic operations in parallel computations, and many
simple and efficient algorithms are proposed for prefix
operations on various parallel computation models. Us-
ing these proposed algorithms, our algorithm becomes
portable.

In Sect. 2, we give definitions and models of paral-
lel computation. In Sect. 3, we introduce an algorithm
for computing the MAT. In Sect.4, we present imple-
mentations of the algorithm on the EREW PRAM and

*In [12], side length of the square is restricted to a odd
number. However, this restriction is unnecessary in practice,
we do not restrict the length.
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the common CRCW PRAM. We also present imple-
mentations on the mesh and the hypercube in Sect. 5.
Section 6 is conclusion.

2. Preliminaries
2.1 The MAT Problem

Given an nxn binary image I, let I[z, 7] € {0,1} denote
a value for a pixel (4,7) (0Li<n—-1,0<7<n—1),
where ¢ (resp. j) stands for the row (resp. column) in-
dex. We assume the pixel (0,0) is on the top left corner
in the image. We call a pixel of value 0 (resp. 1) a
0-pixel (resp. 1-pixel).

The upright maximal square of an image is defined
as a set S of pixels that satisfies the following three con-
ditions:

(cl) All pixels in S are 1-pixels.

(c2) There are two pixels (41, j1), (i2,72) in S such that
ig — 11 = j2 — J1, and a set of pixels {(z,7)|i1 <
1 <i9,71 £ 7 < ja} is equal to S.

(c3) There exists no set S’ of pixels that satisfies the
above two conditions and S C S”.

The MAT problem is defined as a problem to find all
upright maximal squares of an image. Formally, the
MAT problem is a problem to find the following n x n
arrays, M and T'[6].

M[i,j] =0 (it I[¢, 5] = 0)
= maz{k|I|i+g,j+ h|=1,for all g,h
st.0<g<k 1L0<h<k-1}
(if [, 5] =1)
T[i, j] = true (if maz{M]i,j - 1], M[i —1,7],
Mli— 1,5 = 1]} < M[i, j] + 0)

= false (otherwise)

(We assume that M[—1,k] = M[k,~1] =0 (-1 <k <
n—1).)

The M|, §] stores the side length of the maximum
square of l-pixels whose top left pixel is (7,5). The
T4, 7] is true if (¢, 7) is the top left pixel of a maximal
upright square. An example of a binary image and its
M and T are illustrated in Fig. .

2.2 Parallel Computation Models

Parallel computation models used in this paper are the
PRAM, the mesh and the hypercube. The PRAM em-
ploys processors which have the capability to access any
memory cell in a shared memory synchronously. Several
models of the PRAM have been proposed with regard
to simultaneous reading and writing to a single mem-
ory cell [5]. In this paper, we use the EREW (exclusive
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Fig. 1 An example of the MAT: (a) an input image I, and (b)
the M and T of I. (Numbers in the figure are values of M, and
the number is circled if T is true.)

read exclusive write) PRAM and the common CRCW
(concurrent read concurrent write) PRAM. The EREW
PRAM does not allow any simultaneous access to a sin-
gle memory cell. Simultaneous accesses to the same cell
for read or write instructions are allowed on the CRCW
PRAM. In the case of concurrent writing, different as-
sumptions are made to resolve the write conflict. On
the common CRCW PRAM, processors are allowed to
write values to the same memory cell only when they
are attempting to write the same value.

The p X p (two-dimensional) mesh is a SIMD ma-
chine with p? processors arranged into p x p grid. Let
Py (0<2<p-1,0<y < p—1) represent a processor
located in a row # and a column y. A processor P, ,
is connected to processors Py 1, Py_1,4, Pry+1 and
P, 1,, whenever they exist.

The p processor hypercube is also a SIMD machine,
which consists of p = 2¢ processors interconnected
into a d-dimensional Boolean cube. The d-dimensional
Boolean cube is defined as follows. Let zg_124-2--- 2g
be the binary representation of z, where 0 < z <p — 1.
Then processor P, is connected to processors P, (0 <
k< d—1), where 2B = 24 124 9---Zp---2o". In this
paper, we assume a 2-D indexing scheme of the proces-
sors[11], that is, processor P, is denoted by P, ,, where
Zd-1Zd—2° "' 20 = Td—1Td—2** " ToYa'—1Yar—2 "+ Yo and
d=2d.

On the mesh and the hypercube, each processor can
send or receive a word to or from one of its connected
processors in unit time. In this paper, we define that
Az, .y, — Bz, y, denotes a transfer from a variable B of
processor Py, ., to a variable A of processor P, ,, .

2,42

3. Algorithm
3.1 Overview of the Algorithm

To find the upright maximal square, we find the maxi-
mal upper right triangle and the maximal lower left tri-

Y& is the complement of xy.
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Fig. 2 (a) A square of 1-pixels, (b) An upper right triangle of
1-pixels and (c) A lower left triangle of 1-pixels.

angle. The maximal upper right triangles and the max-
imal lower left triangles are denoted by the following
two n X n arrays, UR and LL, respectively (See Fig.2).

URJi,j] = 0 (if I[i, 5] = 0)
= max{k|I[i+g,j + h] = 1,for all g,h
st.0<g<h<k—1}
(if I[i, 5] =1)
LLi,5] =0 (if I[¢,4] =0)
maz{k|I[i+g,j+ h] =1,for all g, h
st.0Lh<Lg<Lk—1}
(if 13, 5] = 1)

i

Using these two arrays, we compute the MAT in
the following four steps.

Step M1: Compute URJ[i, j].
Step M2: Compute LL[i, 7].
Step M3: Set M[i, j| = min{UR}i, j], LL[3, 5]}.

Step M4: Set T'[i,j] = true if maz{M[s,j], M[i —
1,4}, M[i — 1, — 1} < Mli,§] and Mii,j] + 0.
Otherwise, set T[4, j] = false.

We can compute LI in a similar way to the compu-
tation of UR, and we can compute M easily in parallel
once UR and LL are obtained. The computation of
T is described in Sects.4 and 5 because it depends on
parallel models. In next subsection, we consider only
the computation of UR.

3.2 Algorithm for Computing UR

To simplify the algorithm for computing U R, a row and
a column of 0-pixels are added to an input image as the
bottom row and the rightmost column. Added pixels
are (n,0), (n,1), ..., (n—1,n), (n,n) and (0,n), (1,n),
o (n=1,n).

We define a set of pixels, D; ;, for each pixel (i, 7)
as follows.

Dij={(i+gj+h0<g<h
<min{n —i,n—j}}

(Examples of D; ; are illustrated in Fig.3.)
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Fig. 3 Examples of D; ;.

To compute URJ[i, j], all we have to do is to find
the smallest column index of the O-pixel in D; ;. Let
S[i,j] be the smallest column index of the 0-pixel in
D; j, that is, S[i, j] = min{j + h|I[i+g,j+h] =0,0 <
g=<h<min{n—i,n—j}}. Then URJi,j| = S[i,j] —j.

To compute S[i,j] for all pixels (i,5) (0 < i <
n,0 £ j £ n) efficiently in parallel, we use the pre-
fix minima operation twice. The prefix minima of a
sequence (x1,Zz,...,%Zy) is defined to be the sequence
(m1,ma,...,my), such that my = min{zp|1 < h < k}.

First, we compute M D[i, j], which defined as be-
low, for each pixel (i, 7).

MDIi, j] = min{j + k|I[i +k,j+k] =0,
0Lk <min{n —i,n—j}}
MD can be computed from a prefix minima of column
indexes of O-pixels, which are arranged diagonally from
lower right to upper left. It is easy to see that
S[i, j] = man{MDIi,j + k||
0L k<min{n—1i,n—7j}}
Therefore, we can compute S from the prefix minima
of M D, which are arranged horizontally (on each row)
from right to left.

The algorithm we propose is presented in the fol-
lowing.

Algorithm for computing UR

Step Ul:

For each pixel (¢,5) (0 <4 <n,0 < j < n), set
Cli,j) = 7 if I[i, j] = 0 else set C[i, 5] = n'.

(Initialization)

Step U2: (Compute the prefix minima diagonally)
Compute the prefix minima of C for each diago-
nal sequence Cn,u}, Cln—1,u—1],..., Cln—u,0]
and Clv,n}, Clv—1,n—1], ..., Cl0,n —v] (0 £
u < n,0Lv < n—1) and store the results in an
(n+1) x (n+1) array M D, i.e. set

MDIi, jl = min{Cli+k,j + k||
0<k<min{n—1i,n—j}}

tFor our implementation, we set n, but it means oo in
fact.
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foreach4,j (0Li<n,0<5<n).

Step U3: (Compute the prefix minima horizontally)

Compute the prefix minima of MD for each
horizontal sequence MD[i,n|, MD[i,n —1], ...,
MD[i,0] (0 <4 < n) and store the result in an
(n+1) X (n+1) array S, i.e. set

Sfi, j] = min{MD[i,j + k|0 < k <n — j}

foreachi,7 (0£i<n,0<7< n).

Step U4: (Compute UR)

For each pixel (z,7) (0 £ i < n,0<L 7 < n), set
UR[i, j] = S[i, j] — 3. m

4. Implementation on the PRAM

We can compute LL in a similar way to the computa-
tion of UR. We can also compute M (resp. 1) easily in
O(1) time using n? processors on any PRAM once UR
and LL (resp. M) are obtained. Thus the complexity
for the computation of UR dominates the complexity
of the entire algorithm for computing the MAT.

In our algorithm for computing UR, step U1l and
step U4 can be executed in O(1) time using n? proces-
sors on any PRAM easily. In step U2 and step U3, pre-

fix minima computations are performed. It is known -

that a prefix minima computation of m numbers can
be performed in O(logm) time using m/logm proces-
sors on the EREW PRAM[10] and in O(loglogm)
time using m/loglogm processors on the common
CRCW PRAMJ1]. Therefore, we can compute the
prefix minima of our algorithm in O(logn) time us-
ing n?/logn processors on the EREW PRAM and in
O(loglogn) time using n?/loglogn processors on the
common CRCW PRAM by applying this algorithm to
each diagonal sequence or each horizontal sequence be-
cause both the length of each sequence and the number
of the sequences are O(n). Consequently we obtain the
following theorem.

Theorem 1: The medial axis transform of an n x n
binary image can be computed in O(logn) time' us-
ing n?/logn processors on the EREW PRAM and in
O(loglogn) time using n?/loglogn processors on the
common CRCW PRAM. |

5. Implementation on the Mesh and the Hypercube

In this section, we describe an implementation of our al-
gorithm. The implementation is used on both the mesh
and the hypercube. We mention the implementation at
first, and the complexity for each model next.
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5.1 An Implementation

For simplicity, we assume that the number of proces-
sors is p? and that n + 1 = L - p for some posi-
tive constant I.. Each processor is denoted by P, ,
0Lz<p—1,0<y<p—1). Also we assume that
an input image is partitioned into p? subsquares of the
same size, and that each processor F, , has a subsquare
I, defined as follows.

I ylg,h] = Iz * L+ g,y L+ h]
(0<g<L-1,0Sh<L—1)

Arrays in our algorithm, C, M D, S and UR, are dis-
tributed similarly.

On this distribution, L L can be computed in a simi-
lar way to computation of UR, and M can be computed
on each processor on the mesh and the hypercube once
UR and LL are obtained. Once M is obtained, we
can compute 7' by computations on each processor and
transfers of L elements of M from P,_;, to Py, L
times, from P, 4_1 to Py, L times and one element of
M from Py_1y—1 to Pgy. These transfers can be im-
plemented by applying row and column shifts O(n/p)
times. (Note L = O(n/p).) Each shift can be performed
in O(1) time on a p X p mesh and in O(logp) time on a
p? hypercube[6]. The computation on each processor
can be executed in O(n?/p?) time easily. Therefore, T
can be obtained in O(n?/p?) time on the mesh and in
O(n?/p*+(nlog p)/p) time on the hypercube. In the rest
of this subsection, we consider only the computation of
UR.

In the algorithm that computes UR, all computa-
tions can be locally performed on each processor except
for two prefix minima computations; one is in step U2
and the other is in step U3. We implement these two pre-
fix computations with the well-known divide and con-
quer approach. Let ag,aq,...,an,—1 be a sequence for
which we compute the prefix minima. Assume that m =
k- ¢ for some positive integer k, and that this sequence
is partitioned into the ¢ subsequences of length &k and
stored on processors Iy, P, ..., P;_1, where processor
P; stores a SUbSEqUENCE Gixk, Gixk+1, -« - > Q(i41)sk—1- WE
can compute a prefix minima of the sequence as follows.

The result is stored as a sequence dp,dq, ..., dm_1.

(1) Compute the minimum number of the subsequence
on each processor, i.e. set

by =minf{a;lixk <j < (i4+1)xk—1}

on processor P; (0<4<¢g—1).

(We call this minimum number local minimum.)

(2) Compute the prefix minima of the sequence of lo-
cal minima by, b1, ..., b,—; using communications.
Let a sequence cg,cy,...,cq—1 be the result. For
each i (1 < ¢ < g — 1), P; stores ¢;—1. (cq—1 is
ignored.) Set ¢_; = oo on processor Fy.
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(3) Compute the prefix minima on each processor, i.e.
set

disk+n
=min{c;—1,min{a;|i xk <j< ix k+h}}

for all h (0 £ h £ k — 1) on processor P;
(0<i<qg—1).

In the above computation, first and last steps are
executed on each processor. Therefore the second step
is a key for the implementation.

In the case of the prefix minima in step U3, it can
be implemented easily as follows. This is because each
sequence for which we compute the prefix minima is on
processors arranged in a row, and they form a p proces-
sor array (on the mesh) or a p processor hypercube (on
the hypercube). Efficient prefix minima algorithms are
known on these parallel models.

Implementation of the prefix minima in step 3

1. (Compute the minimum numbers locally)

Find a local minimum for each horizontal subse-
quence on each processor sequentially, i.e. set

MS, 4lg) = min{MD, ,[g,k]|0 <k < L—1}
for each g (0 < g < L — 1) on processor P,
0<z<p-1,0<y<p-1).

2. (Compute the prefix minima using communications)

For each set of processors arranged in a row z,
compute the prefix minima of the local minima,
l.e. set

MS;ylg] = min{MS, x[glly < k < p—1}

foreachg (0L g <L —1).

3. For each set of processors arranged in a row z, shift
M S one processor left, i.e. set

M Say—1[g] = MSzy|9]

foreach g (0L g < L—1). Alsoset M S, ,—1[9] =
n (0 < g<L-—1) on processor P, 1 (0<z <
p—1).

4. (Compute the prefix minima on each processor)

Compute the prefix minima for each horizontal
subsequence on each processor sequentially, i.e.
set

Saylg, h] = min{M S 4[g],
min{MD, (g, k||h<k<L—1}}

foreach g, h 0<g<L—-1,0£h<L—1) on
processor P, (0<2<p—-1,0<y<p—1). O
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Fig. 4 An example of diagonal sequences on processors. (Two
lines denote diagonal sequences.)

The prefix minima computation in step U2 can be
implemented with the same idea, however, there is one
remarkable difference; each diagonal sequence is on di-
agonally arranged processors. For example, a diagonal
sequence C[n,n], Cln—1,n—1], ..., C[0,0] is on pro-
cessors Pp_1p-1, Pp_2p-2, ..., Poo, and Cln,n — 1],
C[n — 1,n — 2], Ceey C[I,O] is on PP*LP”l’ Pp—l,p—Q:
Pp—Z,p725 Pp72,p—37 ey Pl,l, Pl’g, P0,0 (SCC Flg 4)
These processors do not form a processor array or a
hypercube. Thus, we cannot compute the prefix min-
ima in a similar way to that in step U3.

To resolve this difficulty, we move the local minima
to processors arranged in a row or a column. For exam-
ple, let My_1 51, My_o 9, ..., My be the local min-
ima of one diagonal sequence on diagonally arranged
processors, which are P,y p—1, Pp—2 p—2, ..., Foo, re-
spectively. We shift the local minimum My 5, (p—1—k)-
processors right, that is, My ,—1 < My, (0 < k < p—1).
After shifting right, these local minima are on proces-
sors Pp_1p-1, Pp—2p—1, ..., Fop—1. For another ex-
ample, let Mp_l’pfl, Mp—l,p—27 Mp_z,p_g, Mpfgwp_y,,
cons My, My g, Moo be local minima. We shift the lo-
cal minimum My, p, (p — 1 — kq)-processors right and
the local minimum My, x,—1 (p — k2)-processors right,
that is, Mg, p-1 — Mg, x, (0 £ k4 < p— 1) and
Mkz,p—l — Mk27k2_1 (1 § kz < p— 1). (Figure 5
illustrates the idea.) This movement can be performed
using O(n/p) row or column shifts in parallel.

Once the local minima are on processors arranged
in a column or a row, we can compute the prefix minima
easily because these processors form a processor array
or a hypercube. After computing the prefix minima of
the local minima, we re-shift the result inverse to the
first shift so as to restore them to required processors.

Details of the implementation are described be-
low. For clarity of description, computations of shift
and the prefix minima computation are performed in
two stages. In former stage, we compute the prefix
minima of lower left diagonal sequences, which are
Cln,ul,Cln—1,u—1],...,Cln—u,0] (0 < u < n), and
we compute the prefix minima of upper right sequences
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Fig. 5 An example of the shift (right): (a) diagonal sequences
before shifting, and (b) diagonal sequences after shifted right.
(Black circles denote local minima.) '

in latter stage.

Implementation of the prefix minima in step 2

1. (Find the local minimum on each processor for each
diagonal subsequence)

Find the local minimum for each diagonal subse-
quence on each processor sequentially, i.e. set

MD1, yu] = min{Cpy[L—1—k,u—k||
0<k<u)
MD2, ,[v] = min{Cy  lv—k,L —1—Ek||
0< k<L v}
foreach u,v (0<u<L—-1,0€v<L—-2)ona
processor P, (0 Lz <p—-1,0y<p—1).

(M Dy and M D4 denote the local minima of lower
left diagonal subsequences and upper right subse-
quences on each processor, respectively.)

2. (Compute the prefix minima for lower left sequences)

(a) For each processor P, (0 £ 2 <p—-1,0<y <
p—1), set

MS1, k1] = MD1, k1] (f y <)
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=n (otherwise)
MS2, 4 lks] = MD2, ko] (if y < z)
=n (otherwise)

foreach k1,ky (0L ki £ L—-1,0Zky £ L —2).
Also set M D2, ,[-1] =n.

(b) For each set of processors arranged in a row z
(0 Lz < p—1), shift MS1 ((p—1)—z)-processors
right, and shift M S2 ((p — 1) — z + 1)-processors
right, i.e. set

MSlw,((y+(p—1)—:c)m0d(p~1))[gl] — MSl;c,y[gl]
M 824, ((y+(p—1)—z+1)mod(p—1)) [92] — M5244]95]

foreach g1,92 (0L g1 £ L—-1,-1< g £ L —2).

(After this, each diagonal sequence is on proces-
sors arranged in a column.)

(c) For each set of processors arranged in a column
y (0 £ y £ p—1), compute prefix minima
of the results, that is compute prefix minima of
MS1,_q k], MS2,_1 4L —2—k], MS1,_5 ,[k],
MS2, o [L—2—k|,..., MS1y,[k], MS2q ,[L—
2 — k], MS1g,lk] (0 <k < L—1), and store the
results to M S1 and M S2 again.

(d) For each set of processors arranged in a column y
(0 £ y £ p—1), shift the results of the prefix
minima one-processor up, i.e. set

MS2; y[L —2—ki] = MS1,,[k1]
MS1y 1 y[L — 2 — ko] «— MS2, ,[k2]

foreach by, ks (0 k1 < L—1,-1< ky < L—2).

(e) For each set of processors arranged in a row z
(0 £z < p—1), shift MS1 ((p—1)—=)-processors
left, and shift MS2 ((p — 1) — z + 1)-processors
left, 1.e. set

M Sz ((y-(p-1)+a)mod(p—1))91] — MS1ay(g1]
Mszz,((y~(p—1)+m71)mod(p71)) [92] — MS293,’!] [92]
for each g1,90 (0L 1 £ L—1,0< g < L —2).
(f) For each processor P, (0 <y <z <p—1), set
Coyll —1,u} = min{C, y[L — 1,u}, MD1, ,[u]}
(if y =)
[, L —1] = min{Cy y[v, L — 1], MD2, ,[v]}
(if y < ).

Cay
foreach u,v (0 Lu<L—-1,0<0v<L—2).

(g) Compute the prefix minima for each diagonal sub-
sequence of local image sequentially, i.e. set

MDgylg,h] = min{C, g+ k, h + k]|
0L<k<min{L-1—g,L—1—h}}
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foreach g h (0L g<L-10<h<L—-1)o
a processor P, (0 <y <z < p—1) and for
each g,h (0 < h < g < L—1) on a processor P, ,
0Lz<p—1,y =u).

3. (Compute the prefix minima for upper right se-
quences)

Compute in a similar way to 2. |
5.2 Complexities

Finding local minima and prefix minima computations
on each processor can be performed sequentially in
O(n?/p?) time on both the mesh and the hypercube
models.

Next we consider the complexity on the mesh.
Computation of shifts by rows or columns can be per-
formed in O(p x n/p) = O(n) time on the mesh because
one row or column shift can be performed in O(p) time
and the number of values to be shifted on each proces-
sor is O(n/p). For the same reason, prefix minima for
each row and column can be computed in O(n) time.

Finally, we consider the complexity on the hyper-
cube. It is known that shift of m numbers on an m pro-
cessor hypercube can be performed in O(logm) time[9].
Because processors in a row or column form a com-
plete p processor hypercube, we can shift the sequence in
O(logp) time. Since the number of diagonal sequences
on each processor is O(n/p), we can perform the whole
shifts in O((nlogp)/p) time. For the prefix minima
computation, it is also known that the prefix minima
of m number can be computed in O(logm) times on
a m processor hypercube[9]. Therefore, applying the
algorithm to compute the prefix minima on each row
or column, the complexity of the prefix computation
becomes O((nlogp)/p) time.

In consequence, we obtain the following theorem.
Theorem 2: The medial axis transform of an n X n bi-
nary image can be computed in O(n?/p® + n) time on
a p X p mesh and in O(n?/p? + (nlogp)/p) time on a
p? processor hypercube (for 1 < p < n). m

6. Conclusion

In this paper, we presented a parallel algorithm for
computing the MAT. The algorithm has the smaller
number of operations than any other known paral-
lel algorithms for the MAT. The algorithm can be
performed in O(logn) time using n?/logn processors
on the EREW PRAM and in O(loglogn) time us-
ing n?/loglogn processors on the common CRCW
PRAM. We also showed that the algorithm can be per-
formed in O(n?/p® + n) time on a p x p mesh and in
O(n?/p?+(nlogp)/p) time on a p? processor hypercube
(for 1 £ p < n). Consequently the algorithm is cost op-
timal on the PRAMSs, on the mesh (for 1 < p £ /n)
and on the hypercube (for 1 < p < n/logn).
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