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SUMMARY We present a high-level synthesis scheme that
considers weak testability of generated register-transfer level
(RTL) data paths, as well as their area and performance. The
weak testability, proposed in our previous work, is a testability
measure of RTL data paths for non-scan design. In our scheme,
we first extract a condition on resource sharing sufficient for weak
testability from a data flow graph before synthesis, and treat the
condition as design objectives in the following synthesis tasks.
We propose heuristic synthesis algorithms which optimize area
and the design objectives under the performance constraint.
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1. Introduction

This paper addresses testability consideration of VLSI
circuits during Aigh-level synthesis. Such early consid-
eration to testability in the design process is one of the
most effective ways to reduce testing cost. High-level
synthesis for testability has been investigated in the sev-
eral literatures[1],[2]. They include such various testa-
bility goals as partial scan designs easily testable for se-
quential automatic test pattern generation (ATPG)[3]—-
[6], full scan designs to make combinational ATPG [7]
applicable, designs for hierarchical testability[8], or
designs for self testability[9]-[12]. In this paper, we
propose a high-level synthesis scheme generating eas-
ily testable data paths. Our work is mainly different
from the previous related works in the following two
points. (1) Our target is weak testability which is a
testability measure of register-transfer level (RTL) data
paths whose target is non-scan design for sequential
ATPG[13]. (2) We give testability consideration from
the beginning of high-level synthesis. High-level syn-
thesis consists of several tasks such as scheduling and
binding. In most works (except for a few) on high-
level synthesis for testability, testability is considered
only during binding after scheduling.

Scan design is the most popular method generating
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easily testable design both for combinational and se-
quential ATPG. Full scan design guarantees high fault
coverage and high fault efficiency obtained by combi-
national ATPG, but it makes much sacrifices of per-
formance and area and it takes long test application
time. Though partial scan design improves such disad-
vantages while giving up combinational ATPG, there
still remains problems of area overhead and long test
application time. Moreover, scan design has another
disadvantage, incapability of at-speed testing. Maxwell
et al.[14] reported that test vectors for stuck-at faults
applied at speed identified more defective chips than
the same test vectors applied at lower speed. Recently,
some non-scan design-for-testability (DFT) techniques
for RTL data paths were proposed by Dey et al.[15]
and Takabatake et al.[13] The latter is our previous
work, where we defined a new testability measure called
weak testability for RTL data paths and presented a
DFT technique which uses thru module to make the
data path weakly testable. Experimental results showed
the effectiveness of the proposed testability measure and
the DFT technique. In this paper, we consider the weak
testability during high-level synthesis that is a design
stage earlier than RTL. This is the first high-level syn-
thesis technique generating easily testable non-scan de-
sign for sequential ATPG.

Scheduling and binding are main tasks of high-
level synthesis. Scheduling assigns operations to con-
trol steps where they are executed. Binding assigns op-
erations to operational modules, variables and delays
to registers, and data transfers to interconnection units
(e.g., connection lines and multiplexors). Testability
of an RTL data path much depends on the data path
structure, and binding determines the structure. There-
fore, many previous works consider testability during
binding after scheduling. There are some few works,
to the best of our knowledge, that consider testabil-
ity during scheduling[3],{4],[10],[12]. In the first two
works[4],[10], scheduling methods are not their ma-
jor contribution. They consider some supplementary
heuristic rules to support the other tasks succeeding to
the scheduling. In other works, generated RTL data
paths are restricted to the model called a register file
model [3] (They succeeded in simultaneous considera-
tion of scheduling and operational module binding in
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this restricted model.), or a genetic algorithm approach
that attempts to optimize area, performance and testa-
bility is proposed[12]. Scheduling has a great influ-
ence on possibility of resource sharing and consequently
on binding. Therefore, testability consideration from
scheduling is necessary to generate testable design. In
this paper, we propose a high-level synthesis scheme
which generates weakly testable data paths while op-
timizing performance and area. This scheme includes
testability analysis for data flow graph (DFG) before
synthesis, and high-level synthesis tasks, scheduling and
binding, which consider the weak testability. The testa-
bility analysis phase is distinctive, where we extract con-
straints on resource sharing from a given DFG for testa-
bility. Testability is considered as constraint on resource
sharing in the succeeding high-level synthesis tasks such
as scheduling and binding. To optimize the testability
with such other objectives as area or performance, we
take a strategy of modifying some known scheduling
and binding algorithms that optimize area and perfor-
mance to consider the resource sharing constraint for
testability within the flexibility of them.

The rest of the paper is organized as follows. In
Sect. 2, some basic definitions and a definition of weak
testability are given. In Sect.3, we propose high-level
synthesis scheme that generates weakly testable data
path. Experimental results appear in Sect.4. Conclu-
sions are given in Sect.5.

2. Models and Testability

Our high-level synthesis scheme is applied to a data flow
graph (DFQG), and transforms it into an RTL data path.
We first define these two models at different levels.

A DFG is a digraph G = (V, E), which represents
behavior of a circuit. The nodes are classified into pri-
mary inputs, primary outputs, operations and delays. A
delay is used in the case where an output sequence is
computed iteratively for some input sequence, where a
delay represents to hold a value obtained in one itera-
tion to use in the succeeding iterations. A directed edge
e = (u,v) in FE represents a data flow from a node u to
a node v. We call a set of edges outgoing from the same
tail but not incoming to a delay a variable. Figure 1
shows a DFG of the 5th order IIR cascade filter. It
has one primary input P/, one primary output PO, 21
operations labeled by * or +, 5 delays D1,D2,---, D5,
and 27 variables in, out,dl, --,d5,a,b, - t.

A data path consists of Aardware elements and con-
nection lines. A hardware element is a primary input,
a primary output, a register, a multiplexor, or an op-
erational module, and a connection line connects two
hardware elements with some bit width.

We assume that, for any node in a DFG, there exists
a path from the node to some primary output node, and
that, fer any hardware element in a data path, there ex-
ists a path from the hardware element to some primary
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Fig. 1 DFG of the 5th IR filter.

output.

In our previous work, we define weak testability as
a testability measure for RTL data paths, and show its
effectiveness [ 13].

For an operational module M, let 7y, denote a
set of operations which M provides, and ZN 3 denote
a set of inputs of M. If an operational module pro-
vides an operation that returns just the value of some
designated input X; in ZN js, such input X; is called a
thru input. Let thru(X) denote a predicate representing
that X is a thru input. Let A; — X (resp. H; — H3)
mean that there is a connection line from the output of
a hardware element H; to an input X of some hardware
element (resp. some input of a hardware element Hs).

We define weak controllability and weak observ-
ability of a hardware element, and then define weak
testability of a data path. Intuitively, weak controlla-
bility of a hardware element H means that some value
(not necessarily any) on the output of H can be justi-
fied from primary inputs, and weak observability of a
hardware element H means that some value on the out-
put of H can be propagated to primary outputs. For-
mally these are defined as follows. For a data path, let
PL, PO, M, Reg, and Mux denote sets of primary
inputs, primary outputs, operational modules, registers,
and multiplexors, respectively.

Definition 1: weak controllability [13]
A set of weakly controllable hardware elements is the
minimum set H,,. satisfying the following conditions.

1. A primary input.
I e PL = 1€ Hye.
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2. A register or multiplexor with a weakly control-
lable input.
H e ReguU Muz ATH' € Hyo[H — H|
= H € Hye.

3. An operational module only with weakly control-
lable inputs or with a weakly controllable thru in-
put.

M e MANX € TNy [FH' € Hye [H — X]]
VX € Ny [thru(X)ASH' € Hye [H' — X]]) =
M € Hye. '

Definition 2: weak observability[13]
A set of weakly observable hardware elements is the
minimum set H,,, satisfying the following conditions.

1. A primary output.
O € PO = O € Hyp.

2. A hardware element connecting to a weakly ob-
servable register or multiplexor.
JH' € Reg U Muz[H' € Hyo NH — H'|
= H € Huyo-

3. A hardware element connecting to a weakly ob-
servable operational module where the connecting
input is a thru input or all the other inputs are
weakly controllable.

IM € MM € Hyo AN3IX € INy[H — X A
(thru(X) VVX' € IN vy — {X}TH' € Hy[H' —
XNl = H € Huo.

Definition 3: weak testability [ 13]
A data path DP is weakly testable iff all registers in
DP are weakly controllable and weakly observable.
Since we assume that, from any hardware element,
there exists a path to some primary output, it is obvious
that if all registers in a data path are weakly control-
lable, all registers are also weakly observable, that is,
the data path is weakly testable. Therefore, we consider
only weakly controllability in the followings.

3. High-Level Synthesis for Weak Testability
3.1 Outline

We propose a high-level synthesis scheme that generates
a weakly testable data path from a given DFG. In this
scheme, we consider weak controllability of elements in
a DFG in the same way as for a data path, and take
a strategy of making a not weakly controllable element
weakly controllable by resource sharing with a weakly
controllable element. Figure 2 shows the outline of the
scheme. We first analyze a DFG, and extract a sufficient
condition for weak testability as a set of constraints on
resource sharing. That is, if a generated data path sat-
isfies these all constraints, it must be weakly testable
and does not need any DFT for weak testability. How-
ever, such constraints on resource sharing may require
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Fig. 2 High-level synthesis for weak testability.

more resources than the data path synthesized without
the constraints. Moreover, we proposed an area efficient
DFT technique for weak testability at RTL [13]. There-
fore, in some case, we may obtain less area data path by
generating not weakly testable data path first, and then
making it weakly testable by the DFT technique after-
ward. From this consideration, we treat the above set
of constraints on resource sharing as a design objective
for the succeeding scheduling and binding. If generated
data path is not weakly testable, we finally apply our
DFET technique and obtain a weakly testable data path.

Scheduling and binding are main tasks for high-
level synthesis. Scheduling assigns operations to con-
trol steps where they are executed. Binding assigns op-
erations to operational modules, variables and delays
to registers, and data transfers to interconnection units
(e.g., connection lines and multiplexors). For simplic-
ity, we assume disjoint operation type sets, that is, for
each operation type, a corresponding module type is
uniquely determined. Moreover, we assume that all op-
erations are single-cycle operations. We do not con-
sider multi-cycling or chaining. As mentioned above,
scheduling and binding consider the design objective
on resource sharing for weak testability. To optimize
this together with such other objectives as area or per-
formance, we take a strategy of modifying some known
high-level synthesis algorithm that optimizes such objec-
tives as area and performance. We choose force-directed
scheduling [ 16] and left-edge register binding [17],[18]
as base algorithms to be modified.

In this paper, we define a design objective, and, for
a given design objective, present scheduling, operational
module binding, and register binding algorithms. Note
that we just define a design objective as a sufficient con-
dition for weak testability, but do not mention how to
extract it. It is our ongoing work.
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3.2 DFG Analysis

Now we consider weak testability of a data path before
synthesis. First we consider weak controllability of ele-
ments in a DFG in the same way as for a data path. In-
tuitively, an element e in a DFG is weakly controllable
if some value of e can be justified from primary inputs.
Weak controllability of an element in a DFG can be
also considered in a partially bound DFG. A partially
bound DFG means that binding to hardware elements
in a data path are partially determined. For such a par-
tially bound DFG, if some element e shares the same
hardware element with another weak controllable ele-
ment e’, we consider that e is also weakly controllable.
For a partially bound DFG, we call the information
to specify which elements share a hardware element a
sharing information. Formally, a sharing information is
a set B = {by,ba,---,b,} where each b; is a set of vari-
ables and delays, or a set of the operations of the same
type. We call each b; a sharing set. Each sharing set b;
means that all elements in b; share the same hardware
element. We assume that sharing sets in a sharing infor-
mation are disjoint, since if some element e belongs to
two sharing sets b; and by then all elements in b; and by
share the same hardware element and hence these two
sharing sets should be one sharing set b; U by. We for-
mally define weak controllability and weak testability
on a DFG as follows. For a DFG, let PZ; denote a set
of primary inputs. ,

Definition 4: weak controllability on a DFG

For a DFG G = (V, E) and a sharing information B, a
set of weakly controllable elements in GG is the minimum
set ¢ satisfying the following conditions.

1. A primary input.
pi € PLg = pt € Ee.

2. An edge outgoing from a weakly controllable node.
(u,v) EEAUE Eye = (4, V) € Ee.

3. A node whose all incoming edges are weakly con-
trollable.
v eV AVYu € {u|(u,v) € E}(u,v) € Eyel
= U € Eye-

4. An edge or node which shares a hardware element
with some weakly controllable one.
b€ BA3Jz € bz € Eye] = bC Eye.

Definition 5: weak testability on a DFG

For a DFG G = (V, E) and a sharing information B, if
all variables and delays in G are weakly controllable, a
pair (G, B) is weakly testable.

For some sharing information B, if some variable
or delay is weakly controllable, the register to which it
is bound is also weakly controllable if the synthesized
data path P satisfies the sharing information B. If all
variables and delays are weakly controllable for B, all
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registers in P are weakly controllable, and P is weakly
testable. That is, for a DFG G and a sharing informa-
tion B, if (G, B) is weakly testable, any synthesized data
path satisfying B is weakly testable. In other word, if
(G, B) is weakly testable, B is a sufficient condition for
weak testability of a data path synthesized from G.

In the following, we call a sharing information suf-
ficient for weak testability a design objective (for weak
testability). A design objective DO is partitioned into
two subsets a design objective on operations DOy and
a design objective on variables DO, where DOy is a set
of sharing sets relevant to operations and DO,. i3 a set
of sharing sets relevant to variables and delays.

3.3 Scheduling

We propose a scheduling algorithm based on force-
directed scheduling algorithm proposed by Paulin and
Knight[16]. It is a heuristic algorithm that minimizes
area under time constraint, where the area is assumed to
be determined (dominated) by the usage of such hard-
ware resources as operational modules or registers. We
extend it to consider both area and a design objective
for weak testability.

In the force-directed algorithm, the number of hard-
ware resources are reduced by balancing the concur-
rency of the operations of the same type. The algo-
rithm is iterative, where one operation is assigned to
some control step in each iteration. The selection of
the operation and the control step is based on a mea-
sure called force. A force is calculated for each pair
of an unassigned operation and a control step, and the
pair with the minimum force is selected. The force re-
flects the influence of the assignment on the balance
of the concurrency of the operations. We can use this
idea for each sharing set in a design objective on op-
erations DOy. If we can make the concurrency of the
operations in each bf; balanced, many operations in bf;
are assigned to different control steps, and consequently,
many operations can share the same operational mod-
ule. In the extended scheduling algorithm, we consider
a new measure test force as well as a force.

To define a fest force, we first explain how to cal-
culate the force. For time constraint and a (partially
scheduled) DFG, a time frame of an operation is the in-
terval [t°,¢"] where ¢t and t” and the earliest and latest
control steps allowed by operation dependencies. The
concurrency of the operations are computed for each op-
eration type as expected numbers (called distribution) of
operations assigned to each control step assuming that
each operation is assigned to each control step within
its time frame with the same probability.

Let an operation op be assigned to a control step
s. This assignment changes not only its time frame but
also the time frames of the successors and predecessors
of op in the DFG. For operation o, let tf(o) and ¢tf'(0)
be its time frames before and after the assignment, and
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6(0) and &’(o) be the lengths of ¢f(0) and tf’(0) (Note
that tf'(op) = [s,s].). Let Sc and Pr be sets of suc-
cessors and predecessors of op, and let type(o) denote
a type of an operation o. The probability p,(¢) of an
operation o for a control step ¢, and the distribution
dist(k,t) of an operation type k in a control step ¢ are
defined as follows.
if ¢ in tf(o)

1/6(o
Po(t) :{ 0/ © otherwise

dist(k,t) = S pol®)

o€{o|type(o)=k}

The force F for the pair (op, s) is calculated as follows.
To reuse this definition for consideration of the weak
testability, a function force takes functions dist and
type as parameters.

F = force(op, s, dist, type)

= Z {Wl‘» Z dist(type(o),t)

oc{op}UScUPr tetf’ (o)
1 .
o) Z dist(type(o), t)}
tetf(o)

Let bfi,bfa, -, bfr be sharing sets in DOs. Now
we define sharing type s_type, test distribution test_dist
and fest force TF.

i ifop € bf;
0 otherwise
Z polt) ifi>0
test_dist(i,1) = {4 ocbf;
0 otherwise (i = Q)
TF = force(op, s, test_dist, s_type)

s-type(op) = {

In the extended scheduling algorithm, the pair of an
operation and a control step with the the minimum
(F,TF) in the lexicographical order is selected in each
iteration. This means that we give priority a force F for
area over a test force TF for testability, therefore, we
can improve testability without sacrifice of area.

3.4 Binding
3.4.1 Operational Module Binding

After scheduling, operational module binding is per-
formed. Our module binding algorithm is based on
the following straightforward way: for each operational
module type, select a maximal subset scheduled to dis-
tinct control steps from operations that have not been
assigned, assign the operations in it to one operational
module, and repeat the above selection and assignment
until all operations are assigned. From the assump-
tion that all operations are single-cycle operations, this
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method guarantees the binding with the minimum num-
ber of operational modules.

In our module binding algorithm, we consider the
design objective within the flexibility on the selection
of the maximal subset. First we estimate the number of
operational modules by the above straightforward way.
For each operational module type &, repeat the follow-
ing assignment until all type k operations which appear
in the design objective on operations DOy are assigned.

e Select a maximum size set of unassigned operations
such that all operations in it belong to the same
sharing set and can be assigned to one of the esti-
mated number of operational modules. Then, as-
sign the operations in the set to the operational
module. Here, a set of operations which can be
assigned to an operational module means that all
the operations in the set are scheduled to distinct
control steps, and no operation scheduled to these
control steps has been assigned to the operational
module.

After assignment of the all operations which ap-

pear in DOy, assign the other operations. Apply the
following assignment for the operational modules one
by one: select a maximal set of unassigned operations
that can be assigned to the operational module and as-
sign them. This modified method also guarantees the
minimum number of operational modules.
Example: Let opl,op2,---,0p9 be the same type op-
erations such that {opl, op2, 0p3}, {op4,op5,0p6} and
{op7,0p8, 0p9} are scheduled to control steps 1, 2, and
3, respectively. Let bfy = {opl,op5,0p9} and bfy =
{op2, 0p3, 0p4} be sharing sets in DOy. In the straight-
forward way, they may be assigned to three operational
modules, say M7, My and Ms, as {opl,op4,opT} to
M, {op2,0p5,0p8} to My and {op3, opb,op9} to Ms.
In our algorithm, in the first iteration, each set of
{op1, 0p5,0p9}, {op2,0p4} and {op3,op4} can be as-
signed to any of 3 operational modules, and the max-
imum one, {opl,op5,o0p9}, is assigned to one opera-
tional module M;. Next, {op2,op4} is assigned to Mo,
and then {op3} is assigned to M3. Among the remained
operations, {op7} is assigned to My and {op6, op8} is
assigned to M3. As a result, we obtain the assign-
ment {opl, op5,0p9} to My, {op2,0p4,0p7} to Ms, and
{op3, opb, op8}.

3.4.2 Register Binding

After scheduling and operational module binding, we
perform register binding. First we assign delays to
one register each. Then we assign variables to regis-
ters by a method based on a left_edge algorithm[17].
The left_edge algorithm is a register binding algorithm
which assigns variables to the minimum number of reg-
isters. We extend this algorithm to consider the design
objectives on variables DO,.
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First we explain the left_edge algorithm. For each
variable in a scheduled DFG, a life time is an interval
from its birth time to its death time. The birth time is
the control step when the value is generated as an out-
put of some operation, and the death time is the latest
control step when the variables is referenced as an input
to another operation. For two variables with lifetimes
[b1,d1] and [ba, do] (b < bs), the two variables can share
the same register if and only if d; < by holds. We briefly
describe the left_edge algorithm.

1. Sort all variables in the order of the birth time.

2. Pick the first variable in the sorted list and assign
it to a new register.

3. Pick the first variable in the list whose birth time
are equal to or later than the death time of the last
assigned variable, and assign it to the same register.

4. Repeat 3 until no variable can be assigned to the
same register.

5. Repeat 2 — 4 until all variables are assigned.

In the left_edge algorithm, if there are multiple variables
with the same birth time, the sort result is not unique,
that is, there is some flexibility. We consider testability
within this flexibility on selection of the first variable.

We modify the step 3 as follows. A variable with
the smallest birth time among the variables whose birth
time are equal to or later than the death time of the
last assigned variable is called a candidate variable. If
there exist multiple candidate variables, give the fol-
lowing rules priority. Let Ve be the set of variables
assigned to the current register, and let V,,,4 be the set
of the candidate variables.

o If one variable in V.44, and another variable v in
Veand belong to the the same sharing set in DO,
choose v. This has the highest priority.

e If no variable in V_,,q belong to the same shar-
ing set in DO, as any variable in Vjgign, choose a
variable which does not appear in DO,..

This modification guarantees that variables are assigned
to the minimum number of registers.

Example: Let v1,v2, - v8 be variables whose lifetimes
are as in Fig. 3. Let {vl,v4} and {v2,v6} be sharing
sets in DO,.. In the original left_edge algorithm, they
may be assigned to 4 registers, say R, Rp, Rs, and
Ry, as {vl,v3,v7} to Ry, {v2,v5,v8} to Rs, {vd} to
Rz, and {v6} to Ry. In the modified algorithm, after
vl is assigned to Ry, v4 is selected among two candi-
date variables v3 and v4 since vl and v4 belong to the
same sharing set. As a result, we obtain the assignment
{v1,v4,v8} to Ry, {v2,v6} to Ry, {v3,v8} to Rz, and
{7_)5} to Ry.
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Fig.3 Life time table.

4. Experimental Result

We made experiments on the proposed scheduling, op-
erational module binding, and register binding algo-
rithms. These three algorithms were applied in this
order, for a given DFG and its design objective for
weak testability. After register binding, we did intercon-
nection binding using multiplexors in a straightforward
way (if there are multiple connections with the same des-
tination then realize each connection via a multiplexor),
and checked the weak testability of the obtained RTL
data path. If obtained RTL data path is not weakly
testable, we apply the DFT technique proposed in [13]
to make the data path weakly testable. In this DFT
technique, thru operation is added to some inputs of
operational modules.

Experiments were made on two benchmarks, the
5th order IIR cascade filter (5th IIR) and the Sth order
digital elliptical filter (5th EWF), under different design
objectives and different time constraints (constraints on
the number of control steps). Figures 1 and 4 show
DFGs of the 5th IIR and the 5th EWF. Tables 1 and
2 show the results for the 5th IIR and the 5th EWF,
respectively. In each table, time con. denotes constraint
on the number of control steps, design objective denotes
the design objective for weak testability, reg, add and
mult denote the numbers of registers, adders and multi-
pliers of the synthesized RTL data path, and DFT thru
denotes the number of thru inputs added to make the
data path weakly testable. In addition, to show the
efficiency of the weak testability, we made experiments
on test generation. We applied test generation to the
circuits obtained just by our high-level synthesis algo-
rithms. We did not apply the DFT. We used a logic
synthesis tool AutoLogic (Mentor Graphics Co.) and
an ATPG tool TestGen (Sunrise Test System, Inc.) on
a SunUltraSPARC2 (300 MHz x 2). Columns % eff. and
t.gen. denote the test efficiency and the test generation
time. :

We select the design objectives as follows. First, we
check the weak controllability of variables and opera-
tions in a DFG. We make a sharing set by combining a
weakly controllable element and not weak controllable
elements with the same type. At this point, we only con-
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Fig. 4 DFG of the 5Sth EWF.

Table 1  Experimental resultl: 5th IIR.
time design data path DFT| feff | tgen.
con. objective reg| add| mult| thru | [%]| [sec]
8 — 4 3 2 1 ]29.05] 31965
(inf},{16,1820} | 4 | 2 | 3 | 0 |99.88] 222
{b,f}.{g.n}, 41 2| 3| 1 |2998]36381
{11,1}.{16,20} 29
{in,m},{p,i},{n,f}, 4 ‘ 2
(UT{15.14) 3 0 |99.97 426
11 — 4 2 3 1 |26.26]| 35254
(inf1,{16,1820} | 4 | 2 | 3 | 0 |9991| 134
{b.f}.{gn}, 4 2| 3| o 9998 279
{11,1},{16,20} ' 7
{in.fe}, a4 2| 3| 0 |9997] 66

{11,9},{16,14}

sider mobilities of variables and operations, where the
mobility of a variable or operation means the control
step interval where it can be scheduled. For example,
in the case of the 5th IIR filter under a time constraint
8 (Fig.1), a mobility of an operation 11 is [1,2] and
a mobility of a variable a is [1, 3]. If two mobilities of
two elements overlap, they may be scheduled to the same
control step and may not be able to share the same hard-
ware element. From this consideration, we make each
sharing set from the elements with disjoint mobilities.
In both tables, the rows with no design objective
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Table 2  Experimental result2: 5th EWF.

time design data path | DFT| fleff. | t_gen.

con. objective reg| add| mult| thru| [%]| [sec]

14 — 8 3 2 2 | 12.59| 55162
{in,y}.{k,0.z}.{j.q},

{Lw}{(p.x}, 81 3| 2| 1 [11.41]63824
{13,23,30} .
{in,8},{d,w},{r,k},

{13,10,15},{33,12}, | 8 | 3 | 2 | 0 |99.51] 907
{1,23,30,31} :

20 — 7 3 1 2 | 14.73| 50487
{in,B}.{c,w}.{r.k}, 3 )
{13,144 .41,2,3,30} 7 1 0 [99.85 81
{in,y}.{k,0.2}.{j.q},

{Lw) {px}, 713 1| 0 |9970] 354
{13,23,30}

show the synthesized results without consideration of
testability. In these cases, we did not obtain weakly
testable data paths, and applied our DFT technique.
Figure 5 (a) shows the data path corresponding the first
row in Table 1. In this data path, only 4 hardware ele-
ments are weakly controllable before applying the DFT
technique. In the cases where design objectives are con-
sidered, we can obtain weakly testable data paths with-
out any DFT except for the two case (the third row in
Table 1 and the second row in Table 2). Figure 5(b)
shows the data path corresponding the second row in
Table 1. In this data path, all hardware elements are
weakly controllable, therefore, the data path is weakly
testable. In the case of the second row in Table 2,
though we do not obtain a weakly testable data path
before applying the DFT technique, we need fewer thru
inputs for weak testability than the case without design
objective. Moreover, the 6th row in Table 2 shows that

- if the time constrained is relaxed to 20, we can obtain a

weakly testable data path from the same design objec-
tive without thru inputs. It is the contrast to the case
without design objectives (the first row and the fourth
row in Table 2). In this case, the synthesized data paths
need 2 thru inputs for weak testability for both time
constraints. We obtained the similar results for the 5th
IIR (Table 1). The case of the third row in Table 1 need
one thru input for weak testability, but we do not need
any thru input for the same design objective when the
time constrained is relaxed (the 7th row). We can con-
sider that the possibility that a design objective is satis-
fied becomes higher when a time constraint is relaxed.
In all cases with consideration of design objectives, we
did not sacrifice the numbers of such resources as regis-
ters, adder or multipliers, that may dominate area of the
whole circuit. Test generation results showed high fault
efficiencies and short test generation times for weakly
testable data paths.
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Al A2

(a) Synthesized data path without design objective.

 dods

®D) o] [5:78
vb 7

i/ N\ e/

weakly testable hardware element
y

(b) Synthesized data path with design objective
{{in, £}, {16,18,20}}.

Fig. 5 Data path of the 5th IIR.

5. Conclusions

In this paper, we presented a high-level synthesis scheme
that considers weak testability of generated RTL data
paths, as well as their area and performance. In this
scheme, we comnsider testability from the beginning of
the high-level synthesis. This differs from most related
works, in which testability is considered only during
binding after scheduling.

In our scheme, first, we analyze a given DFG be-
fore synthesis and extract design objective on resource
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sharing for weak testability. We showed a sufficient con-
dition of the design objective for the synthesized data
path to be weakly testable. We proposed heuristic algo-
rithms for scheduling, operational module binding and
register binding which optimize area and the design ob-
jective under the performance constraint. Experimental
results showed that the proposed algorithms can achieve
weak testability without sacrifice of area of generated
data paths. We found that some design objectives were
satisfied but others were not. It is important to under-
stand what design objective is good, that is, what design
objective is easily satisfied. As an ongoing work, we
are now considering the goodness of design objectives,
and how to extract such a good design objective from a
DFG, and from a control data flow graph.
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