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Abstract

Consideration to testability from the early stage in the design process is one of the most
effective ways to reduce testing cost. This paper addresses approaches to high-level test synthesis,
especially for testability targeting non scan design. We give a brief survey of such approaches and
introduce our approach. We present a high-level test synthesis method that considers testability
of generated register-transfer level (RTL) data paths, as well as their area and performance.
This work is mainly different from the related works in the following two points. (1) Our target
is weak testability which is a testability measure of register-transfer level (RTL) data paths
whose target is non-scan design for sequential ATPG. (2) We take testability into consideration
from the beginning of high-level synthesis. We consider testability during both scheduling and
binding, while most related works (except for a few) consider testability during binding after
scheduling. We propose a heuristic synthesis algorithm that generates a weakly testable data
path while minimizing area under a performance constraint.
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1 Introduction

As the advance of VLSI technology makes circuits increasingly large and complex, testing of
circuits has become more difficult and more expensive. One of the most effective ways to reduce
the cost of testing is consideration to testability from the early stage in the design process.
This paper addresses testability consideration of VLSI circuits during high-level synthesis. Since
testability is one of the design criteria, high-level synthesis for testability aims to optimize
testability together with other criteria such as performance, area, and power consumption.

Testing approaches are roughly classified into two types. One is external testing based on
automatic test pattern generation (ATPG), and another is built-in self-testing (BIST). High-
level synthesis for testability was first studied for BIST early in 1990s [1, 2, 3, 4]. High-level
synthesis for ATPG based testing have also been investigated. They include various testability
goals such as partial scan design [6, 7, 5, 8, 9, 10, 11, 12, 4, 13] and non-scan design [14, 15]
easily testable for sequential ATPG, non-scan design to make combinational ATPG applicable
[16], and designs for hierarchical testability [17, 18, 19].

Scan design is most widely used design for testability (DFT) technique. Especially, full
scan design [20, 21], which replaces all flip-flops with scan flip-flops to make them completely
controllable and observable, is widely accepted in the industry since combinational ATPG is
applicable to such design. However, full scan design has some disadvantages: it has large area
overhead, takes long test application time, and at-speed testing is not possible [22]. Partial scan
design [23, 24], where part of flip-flops are replaced with scan flip-flops, reduces area overhead and
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test application time. To improve area overhead and test application time more, and to make at-
speed testing possible, several non-scan DFT techniques were proposed [25, 26, 27, 28, 29, 30, 31].
This paper mainly concerned with attempts to non-scan design in high-level synthesis. First we
briefly survey the researches on non scan design and its consideration in high-level synthesis.
Then we introduce our high-level test synthesis method.

2 Non scan design

Scan design is a widely used DFT technique in the industry. It replaces all or part of flip-flops
with scan flip-flops and connect them by one or more scan chains. In such design, scan flip-flops
are controllable and observable directly from the primary inputs and at the primary outputs. Full
scan design is applicable to combinational ATPG, and partial scan design reduces the difficulty
of sequential ATPG. However, it has some disadvantages. It has large area overhead required
to replace flip-flops with scan flip-flops. It takes long test application time and at-speed testing
is not possible since test vectors are applied via the scan chains.

To resolve such problems, alternatives to scan design are investigated. Non-scan DFT tech-
niques were first proposed to gate level sequential circuits [25, 26]. They introduce controllability
and observability points to make the circuit easily testable. Dey and Potkonjak[27] presented
a non-scan DFT technique for register transfer level (RTL) data paths. They defined a new
testability measure, k-level testability, and proposed a method that adds test hardware to make
the data path k-level testable. This measure is based on the number of control steps required to
control and observe modules in a loop. These techniques aim to make the circuits easy testable
for sequential ATPG.

Orthogonal scan[28] and H-SCAN][29] are DFT methods for RTL data paths. They are
alternative approaches to full scan design, that is, combinational ATPG is applicable to the
obtained circuits. They make all registers in a data path controllable and observable using
existing paths in the circuits. These works succeeded in reducing both area overhead and test
application time.

Hierarchical test generation is another approach, where test generation is divided into two
phases: generating test patterns for each combinational module at gate level by combinational
ATPG, and finding how to justify the patterns and propagate their responses at RT level. DFT
techniques to make the RTL circuits hierarchically testable are proposed [30, 31].

3 High-level test synthesis for non scan design

3.1 High-level synthesis

High-level synthesis transforms a behavior description of a circuit into an RTL description. A
behavior description is given by a hardware description language, which is first transformed into
a data flow graph (DFG) or a control data flow graph (CDFG). Scheduling and binding are
main tasks of high-level synthesis. Scheduling assigns operations to control steps where they
are executed. Binding assigns variables to registers, operations to modules, and data transfers
to interconnection units (e.g., connection lines and multiplexors). Testability of an RTL circuit
much depends on its structure. Since binding determines the structure, many works consider
testability during binding after scheduling. There are several works on high-level synthesis for
testability targeting non scan design.



3.2 High-level synthesis for orthogonal scan

Norwood et al. considered orthogonal scan in high-level synthesis [16]. Orthogonal scan uses
existing paths in a data path as scan chains. Since all registers are scanned at test mode,
combinational ATPG is applicable, and hence, high fault efficiency and high fault coverage are
guaranteed. Further, additional test hardware is smaller than full scan design thanks to the
use of the function for normal mode, and test application time is reduced thanks to the parallel
use of the bit-width of the data path. They consider orthogonal scan paths during the register
binding after scheduling and module binding are applied.

Register binding can be solved as coloring on a register conflict graph which consists of
variables in a scheduled DFG and conflict edges between the variables which cannot share a
register because of the overlap of their lifetimes. In the register binding, first the number of
registers is estimated by coloring the register conflict graph with no modification. Then it finds a
scan path implementation in the scheduled DFG, where a scan path implementation is chains of
variables consisting of the same number as the estimated number of registers and on which data
flow at normal mode. The register conflict graph is modified by adding conflict edges between
the variables on the same chain in the scan path implementation so that they are bound to the
distinct registers and consequently all registers appear in the scan path. Finally, the modified
register conflict graph is colored. If it fails to color within the estimated number, it backtracks to
the scan path implementation. In their experiments, the proposed method obtained the designs
that have as little as one-third the overhead of a traditional full scan design.

3.3 Genesis

High-level synthesis methods for hierarchical testability are also proposed [17, 18, 19]. Bhatia
and Jha presented high-level data path synthesis system Genesis [17, 18]. Genesis performs
register and module binding simultaneously for a scheduled CDFG. It consider hierarchical
testability while minimizing interconnect area.

Genesis considers a test environment for each operations in CDFG. A test environment for
an operation is a set of all the variables and all the operations appear on some paths in a DFG
that guarantee to justify any values on the inputs from the primary inputs and to propagate
any values on its output to the primary outputs. Binding uses compatibility graphs on variables
and operations, where a compatibility graph consists of nodes corresponding to variables and
operations and edges between two nodes that can share a register or a module. Each edge has
a weight representing the preference for minimization of interconnect area. Genesis repeats the
merge of two compatible nodes into a single compound node until no more merge can be done.
In each iteration, Genesis merges the two compatible nodes connected by the edge with the
most preferred weight among the compatible nodes whose compound node is testable if they
are merged. A compound node is declared testable if one of the operations bound to the node
or bound to one of its compatible nodes has test environment. If any of possible merge is not
testable, extra MUX connection is added.

In experiment for some benchmarks, Genesis synthesizes the RTL circuits that are hierar-
chical testable and as area-efficient as the circuits synthesized other synthesis system without
consideration to testability. Moreover, the obtained circuits achieved 100% fault coverage with
very small test generation time.



3.4 Testability with very low area overhead

The testability goal of the orthogonal scan and Genesis is that combinational ATPG is applicable
to generated circuits. Therefore, they achieve very high fault efficiency. However, there remains
a problem on area overhead. Though such a goal that combinational ATPG is applicable is
sufficient for high fault efficiency, it may not be necessary. We relax the testability goal and use
sequential ATPG to reduce or remove area overhead, while we aim for high fault efficiency. For
this purpose, we introduce weak testability.

4 High-level synthesis for weak testability

Now we introduce our high-level test synthesis method. Our work is mainly different from
the related works in the following two points. (1) Our target is weak testability which is a
testability measure of RTL data paths whose target is non-scan design for sequential ATPG[32].
(2) We take testability into consideration from the beginning of high-level synthesis, that is, we
consider testability during both scheduling and binding. Most works on high-level synthesis for
testability give consideration to testability during binding after scheduling, since testability of
an RTL circuit much depends on its structure and binding determines the structure. However,
scheduling has a great influence on possibility of resource sharing and consequently on binding.
Therefore, testability consideration from scheduling is necessary to generate testable design.

4.1 Weak testability

First we give our testability goal, weak testability for RTL data path [32]. Intuitively, weakly
testable data path guarantees that, for each hardware element, some value (not necessarily
any) on the output of the element can be justified from primary inputs, and some value on the
output of the element can be propagated to primary outputs. Though an RTL circuit consists
of a data path and its controller, we assume that the controller can be modified to support such
justification and propagation, and hence, we consider a data path only. We use a term weak
since this testability does not guarantee complete controllability and observability. However, the
experimental result shows the effectiveness of weak testability. We also define another testability
measure, weak testability cost, to estimate the test generation time for weak testable data path.

A data path consists of hardware elements (primary inputs, primary outputs, registers, mul-
tiplexors, and modules)? and connection lines with some bit-width. We define weak testability
of a data path using weak controllability and weak observability of hardware elements. In the
following definition, H; — X (resp. H; — H2) means that there is a connection line from the
output of a hardware element H; to an input X of some hardware element (resp. some input of
a hardware element Hs). Let PZ, Reg, Mux and M denote sets or primary inputs, registers,
multiplexors, and modules, respectively. Let ZA j; denote a set of inputs of a module M. For
an input X of a module, let thru(X) denote a predicate representing that the module provides
an operation that returns just the value of the X. We call such an input thru input. We give a
definition of weak controllability only. Weak observability is defined similarly.

Definition 1 weak controllability[32]
A set of weakly controllable hardware elements is the minimum set H,,. satisfying the followings.

1. A primary input.
1 e€PL=1E€Hye.

2We consider that constants are included within modules



2. A register or multiplexor with a weakly controllable input.
H € Reg U Muzx ANIH' € Hy|H' — H] = H € Hye.

3. A module only with weakly controllable inputs or with a weakly controllable thru input.
Me MANVX € IN y [3H' € Hye [H' — X]] VIX € TNy [thru(X)ATH' € Hye [H' —
X)) =M€ Hye!s

Definition 2 weak testability/32]
A data path DP is weakly testable iff all registers in DP are weakly controllable and weakly
observable.

We assume that, for each register, there exists a path from the register to some primary
output. In this case, it is guaranteed that if all registers in a data path are weakly controllable
then all registers are also weakly observable and the data path is weakly testable. Therefore, we
consider only weak controllability in the followings.

We also define a measure to estimate test generation time. We define a weak controllability
cost and a weak observability cost for each register and define a weak testability cost as sum of the
weak controllability costs and the weak observability costs of all registers. To propagate a value
on an input of a module to its output, it may need to justify some values on the other inputs of
the module. Weak controllability cost and weak observability cost include the number of control

steps required for such justification. For each hardware element H, a weak controllability cost
of H, denoted by wec(H), is defined as follows.

Definition 3 weak controllability cost [32]
1. wee(I)=0 (if I € PI)
2. wee(R) =wee(H)+1 (if R € Reg NH — R)
3. wee(S) = min{wee(H)|H — S} (if S € Mux)

4. wee(M) = max{wecc(H)|H - X AN X € IN i}
(if M € MAVX € IN y[-thru(X)])

5. wee(M) = min{wee(H)|H — X N X € IN yy A thru(X)}
(if M € MAIX € IN y[thru(X)])

To show the effectiveness of our definition, we made some experiments. We show the result
for a RTL data path of 5th order digital elliptical filter (5th EWF, Fig.1) with the bit-width of
10. (More detailed results are seen in [32]). We compared weak testable data paths with the
results obtained by other two DFT techniques. One is partial scan design to make the data
path acyclic[24], another is 0-level data path proposed in [27]. To make a data path weakly
testable, we make some inputs of modules thru inputs. This require small area overhead. For
example, to make one input of an adder, we just add AND gates of the bit-width (Fig. 2).
In this example, the value on the left input is propagated to the output when thru = 1. We
proposed a heuristic DFT technique that add the minimum number of thru inputs to make a
data path weakly testable.

The experiment used a logic synthesis tool AutoLogic (Mentor Graphics Co.), and an ATPG
tool TestGen (Sunrise Test System, Inc.) on a SUN SPARCstation10. Table 1 shows the result.
In the table, the columns show a type of data path (type), hardware overhead added to the orig-
inal data-path to make it testable (overhead), the number of gates after logic synthesis(#gates),
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Figure 1: A data path of 5th EWF.

(a) Adder with 2 inputs  (b) realization of thru input on the left input.

Figure 2: Realization of thru inputs.

the weakly testable cost(wtc), the number of all stuck-at faults (#faults), fault efficiency (fault
eff.), the test generation time(CPU/sec/) and the test application time (the number of test vec-
tors)(appl.[cycle]). The type orig denotes an original data path, LR and DP are data paths
obtained by the methods in [24] and [27], respectively. Data paths added some thru inputs to
make weakly testable are T1,--- /T6. In the column overhead, TI denotes thru input.

Our DFT technique obtained T1, where fault efficiency is increased to 97.47% from original
19.52%. As compared with LR, DP, this T1 has lower fault efficiency, but the type T9 shows
that we can obtain higher fault efficiency with lower hardware overhead than LR and DP. We
can also see the effectiveness of the weakly testability cost wtc. The result show the correlation
between the weak testability cost and the test generation time.

4.2 High-level test synthesis method
4.2.1 Outline

We present a high-level test synthesis method. This is a heuristic that generates a weakly
testable data path with the minimum number of resources from a DFG under a time constraint,
where a resource means a module or a register, and a time constraint is given as the number
of control steps in which all operations must be executed. For simplicity, we assume disjoint
operation type sets, that is, for each operation type, a corresponding module type is uniquely
determined. Moreover, we assume that all operations are single-cycle operations.

Weak testability has a good property that, before synthesis, we can consider a condition on
resource sharing sufficient for weak testability of a synthesized data path. We call such a sufficient
condition design objective for weak testability, or just design objective. Figure 3 shows the outline



Table 1: Experimental result: weak testability

overhead fault |CPU| appl.
type (thru inputs) #gates|wie| # fauls eff. [%]| [sec] |[cycle]
orig - 6576 | — | 15652 | 19.52 |>8hr| -
LR |15 scan registers 7176 | — | 16252 | 99.46 | 497| 19583
DP |6 multiplexors 6816 | — | 16132 | 98.12 | 1428| 313
T1 |1 TI(X1) 6586 (128| 15712 | 97.47 | 2116 390
T2 |2 TIs(X1,X4) 6596 (120| 15772 | 98.00 | 1777| 1054
T3 |3 TIs(X1,X3,X4) 6606 |116| 15832 | 98.00 | 1567 905
T4 |4 TIs(X1-3,X5) 6616 |114| 15892 | 98.11 | 1519| 836
T5 |4 TIs(X1,X3-5) 6616 |110| 15892 | 98.08 | 1512| 832
T6 |4 TIs(X1,X3,X4,X6)| 6616 |108| 15892 | 98.16 | 1417| 825
T7 |5 TIs(X1-3,X5,X6) | 6626 |106| 15952 | 98.17 | 1404| 825
T8 |6 TIs(X1-6) 6636 | 98| 16012 | 98.18 | 1347 972
T9 |9 TIs(all inputs) 6669 | 98| 16192 | 99.55 | 1005| 892

of this method. In the method, we first estimate the number of resources using force-directed
scheduling[33] that is a heuristic minimizing the number of resources under a time constraint.
Then we iteratively attempt design objective extraction, scheduling and binding until satisfying
the estimation of the number of resource. In design objective extraction, we analyze a DFG and
extract constraint, design objective, on resource sharing for weak testability. If we cannot obtain
a data path within the predetermined iteration limit, we reduce the extracted design objectives,
and iteratively attempt design objective reduction, scheduling, and binding until satisfying the
resource estimation. Finally, we apply the DFT technique([32]) to a synthesized data path if it
is not weakly testable.

4.2.2 Design objective

A DFG is a digraph G = (V, E), which represents behavior of a circuit. The nodes are classified
into primary inputs, primary outputs, operations and delays. A delay is used in the case where
an output sequence is computed iteratively for some input sequence, where a delay represents
to hold a value obtained in one iteration to use in the succeeding iterations. A directed edge
e = (u,v) in F represents a data flow from a node u to a node v. We call a set of edges outgoing
from the same tail but not incoming to a delay a wvariable. Figure 4 shows a DFG of the 4th
order IIR cascade filter.

We define weak controllability of an element in a partially bound DFG like for a data path. A
partially bound DFG means that binding to resources are partially determined. For a partially
bound DFG, we call the information to specify which elements share a hardware element a
sharing information. A sharing information is a set B = {B1, Ba, - - -, By} of sharing sets, where
each sharing set B; represents a set of elements which share the same resource. For such a
partially bound DFG, if some DFG element e is weakly controllable and it shares the same
resource with another DFG element ¢’, we consider e’ is also weakly controllable. We define
weak controllability and weak testability on a DFG as follows. For a DFG, let PZ; denote a set
of primary inputs.

Definition 4 weak controllability on a DFG [14]
For a DFG G = (V, F) and a sharing information B, a set of weakly controllable elements in G
is the minimum set &, satisfying the followings.
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Figure 3: Outline of a high-level synthesis method.

1. A primary input.
pt € PLg = pi € Eye.

2. An edge outgoing from a weakly controllable node.
(u,v) € EAu € Eye = (u,v) € Eye.

3. A node whose all incoming edges are weakly controllable.
v eV AVu € {u|(u,v) € E}[(u,v) € Epe] = v € Ene.

4. An edge or node which shares a hardware element with some weakly controllable one.
B e BA3Jx € Blx € Eye] = B C Eye.

Definition 5 weak testability on a DFG [14]
For a DFG G = (V, F) and a sharing information B, if all variables and delays in G are weakly
controllable, G is weakly testable for 5.

If some DFG element is weakly controllable for a sharing information B, the resource to
which it is bound is also weakly controllable if the synthesized data path satisfies B. This
implies that if G is weakly testable for B, B is a sufficient condition for weak testability of a
data path synthesized from G. A design objective is a sharing information sufficient for weak
testability.



Figure 4: DFG of the 4th IIR filter.

4.2.3 Design objective extraction

In general, for a given DFG and a time constraint, there may be one or more design objectives.
To extract good design objectives, we introduce overlap degree of a sharing information which
represents difficulty for a sharing information to be satisfied. For two elements to share the
same resource, it is necessary that these two elements do not use the same control step. For
operation dependencies in a DFG and time constraint, we can find which control steps must be
used, may be used, or never be used by each operation or each variable (See detailed definition
in [15]). From such analysis, we derive the overlap possibility olp(ey,e2) of two operations or two
variables. The overlap possibility olp(e1,e2) = 0 implies that they never use the same control
steps, therefore, they can share a resource. The value co implies that they necessarily use the
same control step and they cannot share a resource. The value 1 implies they may use the same
control step. We define an overlap degree old of a sharing set B and of a sharing information B
as follows.
old(B) = Z olp(e1, e2)

€1,€2 €B €1 #eZ

old(B) = ) old(B)
BeB
The value 0 of the overlap degree means that all elements in each sharing set are sure to use
distinct control steps, while the value co means some elements in some sharing set use the same
control step and they cannot share a resource.
We extract a design objective with a low overlap degree from a DFG by the following greedy
method. Starting from an empty sharing information, we repeatedly augment it until it becomes



a design objective. We consider two types of augmentation of a sharing information B. One
is to add an element e to some sharing set B, where e is not weakly controllable for B and all
elements in B and e are assigned to the same type of resource. Another is to add a new sharing
set consisting of a weakly controllable element e; and a not weakly controllable element ey to
B, where es and ey are assigned to the same type of resource. In each iteration, we select the
next augmentation as follows.

1. Select the augmentation such that the increased overlap degree is the smallest. If there
are two or more such augmentations, consider the next.

2. Select the augmentation such that the increased number of types of weakly controllable
resources is the largest. If there are two or more such augmentations, consider the next.

3. Select the augmentation such that the increased number of weakly controllable elements
is the largest. If there are two or more such augmentations, select one of them, arbitrarily.

An extracted design objective is considered as constraint in the succeeding high-level syn-
thesis tasks. If the succeeding tasks fail to satisfy the extracted design objective, we extract the
next design objective. In this case, the last augmentation is canceled and the design objective
extraction algorithm backtracks.

4.2.4 Scheduling

Scheduling assigns operations to control steps where they are executed. First we delete all delay
nodes from a DFG, and apply a scheduling algorithm to the remained acyclic DFG. We schedule
operations for a given sharing information to be satisfied. For two elements in the same sharing
set to share a resource, it is necessary that two elements are assigned to different control steps.
To represent such a condition, we add new types of edges to a DFG. We define two types of
edges an operation constraint edge and a variable constraint edge.

An operation constraint edge (op1, op2) means that ops must be executed after op;. There-

fore, two operations never be executed at the same control step and they can share the same
module. For two operations in the same sharing set with overlap possibility of 1, we add an
operation constraint edge that is outgoing from the operation whose largest distance from a
primary output is not smaller and incoming to the other operation. A variable constraint edge
(op1,0p2) means that opy must be executed at the same control step as op; or after. If there
exist variable constraint edges from all operations that use a variable v; to an operation that
generates a variable vo, two variables never use the same control steps and they can share a
register. For two variables in the same sharing set with overlap possibility of 1, we add variable
constraint edges that are outgoing from all operations which use the variable whose largest dis-
tance from a primary output is not smaller and incoming to an operation which generates the
other variable.
Example. Figure 5 shows an original DFG and an extended DFG for a design objective
{{1,4},{b, f}} where 1 and 4 are operations and b and f are variables. We add an operation
constraint edge (1,4) for a sharing set {1,4} and a variable constraint edge (2,1) for a sharing
set {b, f}.

We schedule the above extended DFG by the modified algorithm of the force-directed schedul-
ing algorithm[33]. We modified it so as to consider operation constraint edges and variable
constraint edges.
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(a) original DFG. (b) extended DFG.

Figure 5: extended DFG.

4.2.5 Binding

We consider design objective during register binding and the succeeding module binding. Reg-
ister binding and module binding are performed on a register compatibility graph and a module
compatibility graph, respectively. These are graphs that represent which DFG elements can share
a resource. In register binding, we first merge variables in the same sharing set into one node,
and then apply a known minimum clique partition algorithm[34] to the merged compatibility
graph. Module binding performs similarly. We first merge operations in the same sharing set
into one node. Then we repeatedly pick a maximal clique from the merged compatibility graph
and assign operations in the clique to one module. We repeat this until all operations are as-
signed. To minimize the interconnection cost, we select a maximal clique so that operations that
have common input registers or common output registers belong to the same clique. Finally, we
connect resources by connection lines and multiplexors according to a DFG.

4.2.6 Design objective reduction

If we cannot obtain a weakly testable data path within the iteration limit, we reduce design
objectives. Design objectives obtained in the preceding extraction are reduced to sharing in-
formation that may not be sufficient for weak testability. We apply the following one element
deletion and synthesis considering the reduced sharing information to the extracted design ob-
jectives in turn until we obtain a data path within the estimated number of resources. If we
cannot obtain such a data path, we delete one more element from reduced sharing informations,
and repeat this.

We explain how to delete one element from some sharing set in a design objective or a sharing
information B. Let G, be an extended DFG for B. We first find constraint edges that cause
the dissatisfaction of B. For this purpose, we apply the modified algorithm of a well known
list scheduling algorithm[35] to G.. It is a heuristic scheduling algorithm that minimizes the
number of control steps under a resource number constraint. We modified it so as to consider
constraint edges. If scheduling result exceeds the time constraint and some constraint edges
appear on critical paths, we select an element to be deleted among the operations and variables
corresponding to such constraint edges. Otherwise we select an element among all elements in
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Table 2: Characteristic of benchmark circuits.
arcut | #FPI | #PO | #delay | #variable | #add | #muli.

3rdLWF 1 1 3 7 4 1
4thIIR 1 1 4 22 8 9
4thJWF 1 1 4 20 13 4
5thEWF 1 1 7 38 26 8

Table 3: Experimental result

circuit time design data path #back- | testability fault CPU
const. | objective | #Freg(v) | Freg(d) | #add | #mull | track eff [%] | [sec.]

3rdLWF 4 - 4 3 2 1 - n/wt 23.29 | 17754
ex 4 3 2 1 0 wi 99.88 14

5 - 4 3 1 1 - n/wt 24.44 | 15988

ex 4 3 1 1 0 wi 99.93 13

4thITR 6 - 7 4 2 3 - n/wt 24.48 | 36725
ex 7 4 2 3 0 wi 99.74 385

8 - 7 4 2 2 - n/wt 39.35 | 29164

ex 7 4 2 2 0 wi 99.88 117

4thJWF 8 - 8 4 2 2 - n/wt 18.38 | 33158
ex 8 4 2 2 1 wi 99.93 49

11 - 8 4 2 1 - n/wt 20.08 | 33120

ex 8 4 2 1 0 wi 99.90 221

5thEWF 15 - 10 7 4 2 - n/wt 15.11 | 60212
ex 10 ( 4 2 0 wi 99.38 1057

20 - 10 7 3 1 - n/wt 15.55 | 50502

€x 10 7 3 1 0 wi 99.97 30

B. Among these candidates, we select the element such that an overlap degree is decreased most
by its deletion.

4.3 Experimental result

We made experiments on the proposed high-level test synthesis method. Experiments were made
on four benchmark circuits, the 3rd order lattice wave filter (3rd LWF), the 4th order IIR cascade
filter (4th IIR, Fig.4), the 4th order Jaumann wave filter (4thJWF) and the 5th order digital
elliptical filter (5th EWF), under different time constraints. Table 2 shows the characteristic
of these benchmark circuits. We applied our synthesis method to these and generated weakly
testable data paths (Table 3). A column time const. denotes time constraints. In a column
design objective, '— means the synthesis without design objective extraction and “ex” means the
synthesis considering extracted design objectives. Columns #reg(v), #reg(d) #add and #mult
denote the numbers of registers for variables, registers for delays, adders and multipliers of the
synthesized RTL data path, respectively, and #backtrack denote the number of backtracks of
design objective extraction caused by the dissatisfaction of the succeeding synthesis. In a column
testability, “wt” means that an obtained data path is weakly testable and “n/wt” means a data
path is not weakly testable. We then applied test generation to show the effectiveness of weak
testability. We used a logic synthesis tool AutoLogicIl (Mentor Graphics Co.) and an ATPG
tool TestGen (Sunrise Test System, Inc.) on a Sun Ultra (300MHzx 2). Columns fault eff. and
CPU denote the fault efficiency and the test generation time.

For all benchmark circuits and all time constraints, we obtained weakly testable data paths
with the same number of resources as the case without design objective extraction. In the case
without design objective extraction, we did not obtain any weakly testable data path. That is,
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our method realized weak testability without sacrifice of the number on resources. Moreover,
in most cases (except for one case), the synthesis algorithm generated a data path for the
design objective extracted first. This implies the effectiveness of the overlap degree. In the test
generation result, weakly testable data paths have almost complete fault efficiency with small
test generation time, while not weakly testable data paths have low fault efficiency.

5 Conclusions

Consideration to testability from higher level is one of the most effective ways to reduce the
cost of testing. Though scan design is widely used in the industry, it has disadvantages to
be improved and resolved. DFT and SFT(synthesis for testability) based on non scan design
are important technologies. In this paper, we considered approaches to non scan design, and
introduced our high-level test synthesis method.

Our high-level test synthesis method considers weak testability whose target is non-scan
design for sequential ATPG. Moreover, we take testability into consideration from the beginning
of high-level synthesis. We proposed a heuristic method that generates a weakly testable data
path with the minimum number of resources from a DFG under a time constraint. Experimental
results show that our method obtained weakly testable data paths with the same number of
resources as the case without consideration to testability. That is, we achieved weak testability
without sacrifice of the number of resources.

There are some remained works. One is on scalability. Though we obtained effective results
for some benchmarks, we do not know the method is applicable to larger scale circuits. For
larger scale circuits, we may need to consider other testability measures such as weak testability
cost, or testability to make combinational ATPG applicable. Another problem is on controller.
We just assume that the controller can be modified to support testing of a data path. We must
consider how to modify it, and how to test the whole circuit including the controller itself.
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