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Abstract

A method is developed to modify a given machine to an output-observable one by adding a
minimum  number of extra outputs. For the k-ouwtput-observable sequential machines, an
input-tutput sequence wywy, such that wy is an input-output sequence which passes through all
transitions of the given state table and wy is an arbitrary input-output sequence of length k, can be
shown to be a checking scquence, and hence nearly minimum length checking sequences are

obtained.

1. Introduction

On the fault detection problem for sequential machines, it is desirable to find an
efficient procedure to construct checking sequences of short length. An efficient
approach to the design of checking experiments, called the transition checking
approach, was first introduced by Hennie'), However, for machines without
distinguishing sequences, his procedure yields very long test sequences. Hence, for
machines without distinguishing sequences, new approaches are proposed to this
problem. One approach is to modify a given machine by adding extra inputs?~*) or
outputs® 1%} 50 that the modified machine has a distinguishing sequence. For an
n-state, m-input symbol machine, these procedures give a bound on the length of
checking sequences that is approximately mn®. Therefore, for machines with a large
number of states, these procedures yields very long cxperiments, which make them
impractical.

In order to overcome this, we introduce the output-observable sequential
machines which have checking sequences of short length. For a k-output-observable
sequential machine, we can find a checking sequence w;w;, such that w, is an
input-output sequence which passes through all transitions of the given state table and
&y is an arbitrary input-output sequence of length k. Since a checking sequence must
pass through all transitions of the given state table, the inputoutput sequence () is
shorter than every possible checking sequence, and consequently shorter than the

341



542 Hideo FUJIWARA and Kozo KINOSHITA

minimum length checking sequence. Hence, the length of the checking sequence 0w,
is nearly minimum. Moreover, it is shown that the procedure of organizing checking
sequences is simple and systematic.

In this paper we describe a method for the modification of a given machine to
an output-observable one by adding a minimum number of extra outputs, and an
efficient procedure for the design of checking experiments of the output-observable

sequential machines.

2. Output-Observability and Semi-FSR Realizability

A sequential machine M will be represented by a quintuple M=(S, 1, Z, §, A)
where S is a finite set of states, 1 is the input alphabet, and Z is the output alphabet,
5. SxI* = % is the next-state function, and A: SxI* = Z* is the outpur function. The
sequential machines considered in this paper are assumed to be reduced and strongly
connected Mealy machines, such that binary codes are already assigned to their output

symbols, ie., the output function A is represented by a direct product, z;x -+ - xzp, of

binary output functions z,,. .., 2z, shown in Fig. 1.
>
i Black :
Box
¥y Ip
—>

Fig. 1 Sequential machine M

Definition 1: A decomposition over a set of states S is a collection of subsets of
S, called blocks, such that their set union is S. A decomposition such that its blocks
are pairwise disjoint is called a partition.

Definition 2: We define a relation - corresponding to a decomposition such
that 5 ~ §; for Sj, Sje8 <=> §j and §j belong to the same block of 7. For Bj. Bjer,
Bj ~ Bj <=>> 5§ =5 for all SieBj and SjeB;.

Definition 3: A reduced form #f of 7 is a decomposition satisfying the following
conditions:

(1) 5,‘;5]{=} S'.?;Sj,

[2) B; -;ﬂ_- Ei for all i?gj, where Bi and BjﬂT.

Definition 4: Let ~ and ~ be two relations over 8. The relation ~ and ~ are

T nT T

defined as follows:

8 = 8 <=> 8 > §j and §; > §j, 8; . §j <=>§ 5 Sjor §; ~§;.
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The reduced decompositions 7t and 747, which correspond to the relations 3 and
#ir» are called the product and the union of 7 and 7 respectively.

Definition 6: <1 (7 is finer than 7) if and only if §; ~ §; <=>§; =~ §j. Let I
be the partition in which all elements of S form one block, and let © be the partition
in which every block is a singleton,

Definition 6: A sequential machine M is called to be (k;, kaz, ... -""‘p J-semi-FSR.
realizable with respect to m if the next-state function of M can be realized with the
feedback-shift-register circuit shown in Fig. 2 such that binary codes of its state
assignment are distinet among the states belonging to the same block of 7.

~1
Combinational ¥ e ¥
| Clircuit i s i
1

W —

Yp1 = — — 3 Ypk,

Fig. 2 Feedback-shift-register circuit

Definition 7: A sequential machine M is called to be (k,, . .. .k, J-output-obsery.
able with respect to the output function z % *zp, and a decomposition w if the follow-
ing conditions arc satisfied.

{1} Each output sequence j; of length k; observed at the output function z
(j=1.....p) is uniquely determined only by the initial state ; independently of input
sequences,

(2) 5 ¥ 8 == (i, .., Mip) + (s - - - Hip) for all 5; and 5€8.

When a decompasition 7 is I, M is briefly called to be output-observable.

The following lemmas can be readily proved by Definitions 6 and 7.

Lemma 1: A sequential machine M is (k;,. .. kp)-semi-FSR realizable with
respect to 7 if and only if there exist p decompositions m, ..., mp, such that
m=m;+...+m,, and for each i (i=1,...,p) M is kj-semi FSR realizable with respect to,
;.

Lemma 2: A sequential machine M is (k,,.... k,]-cutput-observable with
respect to the output function z,x ... %2p, and a decomposition 7 if and only if there
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exist p decompositions ,,...,7,, such that 7=m;+...+m, and for each i
(i=1,....p) M is kj-output-cbservable with respect to the output function z; and the
decompaosition ;.

Theorem 1: The necessary and sufficient condition for a sequential machine M
to be modified by adding a binary output function z so that it will be
k-output-observable with respect to the output function z and a decomposition 7 is
that M is k-semi-FSR realizable with respect to 7.

Sufficiency: Suppose that M is k-semi-FSR realizable with respect to m. Let
Yy, .... Yy be its state assignment variables, and let Y;(t) be a value of Y; at a time t
Then the following conditions are satisfied.

(1) Si 5 8 == (Yi...oo Y # (Yoo Vi) where (Yjy,..., Yig)
denotes a binary code of the state assignment corresponding to a state 5.

(2) Yie)=¥,_,(t-1) for 2<i<k

Define a binary output function z such that 2(8;)=Y;y for 5;€S. Every length-k
output sequence z(t)z(t+1) ... z(t+k—1) observed at the output = starting at a time t is
Y ()Y (1) ... Yg(etk=1). From (2) this sequence equals Y (6)¥g g (t) ... ¥y (t)
which is a binary code corresponding to a state S; at a time t. Hence, each length-k
output sequence i1y observed at the output z is uniquely determined only by the initial
state S;, and p=Yp...Y;. From (1), § =~ 5 => p#pj. Therefore M s
k-output-observable,

Mecessity: Suppose that M has been modified by adding a binary output
function z so that it is k-output-observable with respect to the output function = and
. Then the following conditions are satisfied.

(1) Each output sequence p; of length k observed at the output z is uniquely
determined only by the initial state 5.

(2) w#uy for all 55 = §j.

When 14;=Z,Z; ... Zy, let a state assignment be (Y; . ..., Yie)={Ze, . ... Eq)
If 8(8;, Iq) =S; for some input I, then u=Z,Z; ... ZxZy+1 where Zy., is uniguely
determined by §; and 1 from (1). Hence, we can define a feedback function f such
that £(8;, 15)=2Zys . Since =Z,Zy ... Zy and M=Z22Z; ... ZpZg+ ) for &(5;, 1g)=5;,

W ].'l.l'urf
Yiit) = Yi_jt—1)for 255k

From (2} § ] 55 == =2 (Yig, - . Yie B (Yips .. -0 Yik).
Therefore M is k-semi-FSR realizable with respect to 7. Q.E.D.

Theorem 2: Let M be a sequential machine. Then the following four conditions
are equivalent.

(i) Therc exist p binary output functions zy,...,z, such that M s
Y. l:p_:l-uutput-ul:lstﬂable, with respect to the output function z,x ... Mg and a

decomposition .
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(ii) There exist p binary output functions z,, ... . #p, and p decompositions

My ...., M, such that M is kj-outputobservable with respect to 7, and m for
“ 1<i<p, and m+. .. tmp=r,

(iii) There exist p decompositions #,,...,m,, such that M is kjsemiFSR

realizable with respect to m for 1 <i<p, and m+.. +m,=7.

(iv) Mis(k,,..., kp}semi-FSR realizable with respect to 7.

Proof: From Lemma 2, (i) and (i) are equivalent. From Theorem 1 {ii) and
(iii) are equivalent. And it follows immediately from Lemma 1 that (iii) is equivalent
to (iv). Q.E.D,

3. Output-Observable Sequential Machines

In this section we show an algorithm for medifying a given machine to an
output-obvervable onc by adding a minimum number of extra outputs.

Observing output sequence at the output terminal z, we can find a maximum
decomposition 7 and a minimum k  such that the sequential machine is
k-output-observable with respect to z and 7. This method is shown in the following.

Procedure A:

(1) Set m(0)=0, k=1, and €=1.

(2) Test whether every output response of length € at the output z is
determined only by the initial state independently of input sequences. If “no”, set
m=m(€—1), and seop. If “yes”, go to step (3).

(3) Let pi(®) be the output sequence of length € corresponding to a state S;.
Define a relation atly’ such that

5 o §p <=> (k) # p(L).

(4) M a(R)>mE - 1), set k=L

(5) 1 m(€) <1 set L=0+1, and go to step (2). Otherwise set m=m(¥), and stop.

Suppose that, for a given sequential machine M, m; and k; (i=1,. .., r) have been
obtained by means of Procedure A, then M is kj-output-observable with respect to the
output function z; and a decomposition m; for each i {1 <i<r). If my+. .. 47, =L, then
M is output-observable. If m;+ .., +7,<I, then we have the following theorem.

Theorem 3: The necessary and sufficient condition for a sequential machine M
to be modified by adding s binary outpur functions wy,...,w, so that it will be
(kyo... ky, ®,.. ., &)-output-observable with respect to the output function
TyX .. XEXW X .. xWy is that M ds (Ry, ..., & )semi-FSR realizable with respect to
#, such that m+m+_ . 4w, =l

Proot: This can be proved readily from Theorem 2 and the fact that M is
ki-output-observable with respect to z; and m; for each i (i=1,...., 1.

With these preparations, we are now to describe a modification algorithm of
sequential machines to output-observable anes.
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Fig. 3 Illuseration of Theorem 3

Procedure B — Modification Algorithm: :

(1) Given a sequential machine M having binary ocutput functions zy,.... %,
find a maximum decomposition m; and a minimum k; for each z; (i=1,...,r) by
means of Procedure A,

(2) Construct a minimum decomposition T such that mm+. .. +i,=1.

(3) Sets=l,

(4) Test whether M is (£, ..., %)semi-FSR realizable with respect to m for
some integers &, ..., %, If M is not semi-FS5R realizable, set s=s+1, and go to step
(4).

(5) Let Yy (i=1,..,s: j=1.....%) be the state assignment variables of the
feedback-shift-registers thown in Fig. 2, and let (Y;,, Y, ..., Y:EIL <umid
) PR Y;g’} be a binary code corresponding to a state S;. Define binary output

function w; (1< j<s), such that wj{5|}=Y}gj for §;€8.

Table 1 Machine M,

P. 8. M. 8., z;
x=0 x=1
1 4.0 2.0
2 3,0 2,0
3 4.1 3.1
4 5.1 5.1
5 5.1 1.1
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Table 2 State assignment

YI Ill{Ill
1 0 1
2 0 0
3 0 0
| 0
e ol | 1

Table 3 Modified machine M,

I

P.8. N5,z 2,
! x=10 x =]
1 4,01 2,0
2 3,00 2,00
3 4,10 3,10
4 510 5.10
5 5.11 1,11

Example 1. To illustrate Procedure B, consider a sequential machine M, given
by Table 1 which is not output-observable. Let us modify M, to an output-observable
machine by Procedure B. The determination of a minimum number of additional
output functions is shown below, where each step is indicated by the corresponding
number,

(1) Applying Procedure A, we can obtain ky=1, and m, =13, 14, 15, 23. 24
25] .

(2) The minimum decomposition 7. such that w4+, =1, is 7= [12, 345 ] .

(3) s=1.

(4)* M is 2-5emi-FSR realizable with respect to 7. The state assignment is shown
in Table 2.

(5} By adding output function z3 such that z;=Y5, we can obtain the modified
sequential machine My shown in Table 3 which is {1, 2)-output-observable with tespect
to 2 X2,

4. Fault Detections for Output-Observable Sequential Machines

* State assignment problem of semi-FSR realization is the simple extention of that of FSR realiza-

Lim,
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In this section we consider fault detection experiments for
(kyi,.-..kp)-output-observable sequential machines. Assume that the class of allowable
failures satisfies the following conditions.

(1) Any failure which occurs is assumed to occur throughout the test.

(2) Faulty machines are still (kj,.... kp)-output-observable such that ki<k
for each i {l'i:l ‘_"-:p}
In Section 2 we have shown that (ky, ..., kp)outputobservable sequential

machines can be realized as binary FSR's of the form shown in Fig. 2. For sequential
machines with shilt registers, the above failure assumption (2) means that the structure
of shift registers is preserved and the number of stages of each shift register does not
increase even though the sequential machine might be faulty.

Under these assumptions, let us design a checking sequence. Given a
(ky, . ., kp)-output-observable sequential machine - M, let @, be the shoreest
input-output sequence that passes through all transitions of the state table of M, and
let w; be an arbitrary input-output sequence of length k which succeeds w,, where
k=max | ki, ... kp ] It will be proved in the following theorem that the
input-output sequence «;wz, called C-sequence, is a checking sequence.

Theorem 4: Let M be an output-observable sequential machine. Then the
sequential machine satisfying* the C-sequence of M is either isomorphic to M or covers
M.

Proof: Let M'=(8". 1, Z, §". }') be a sequential machine satisfying the C-sequence
of M. From the failure assumption, M’ is (kj, ..., kpJ-output-observable such that
ki <k, for cach 1 <i<p. Let §; and Sp be the states of M and M’ respectively at time
t in the Csequence. Define a mapping £: S = 8’ such that f{$,)=S; for each time t. We
first show that this yields a well-defined mapping.

MNow suppose  that S;Iﬁ;1 at time t; and t;. This implies that
7ty )it ) ..ozl ki —1) # ity )zi(ta+1) . .. zj(ta+k;—1) for some i, since M s
(kj, ..., kp)output-observable.  Therefore =z;(t,] ... it tki—1) ... zi{ty +ki-1) #F
zi(ta)z(ta) . . . 71 (ta+ki=1) . . zj{ta+ki—1). This implies S; #5¢, for S¢,, Si,€5, since
M is (ky, ..., kp)-output-observable. Hence Si; # 5, implies S, ¥ 5y, This shows
that f is well-defined.

Let I, and Z; ke the input and output symbol respectively at time t in the
C-sequence. From the definitions of f, we have

f(8(Se, 1)) = f(Sya1) = Stay = 8'(Sq. L), and

A8y, 1) = Z¢ = N(Sp, I) = M'(f(5¢), 1) for any time t.

This holds for all states and all input symbols of M, since the C-sequence passes
through all transitions of the state table of M. Hence fis a homomaorphism of M into
M', and M’ covers M. If the number of states of M’ is equal to that of M, then [ is an

*  We say that a sequential machine satisfies an input-output sequence if, applying the input sequence,

the output sequence is obtained.
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isomorphism of M onto M’ is isomorphic to M.  Q.E.D.

Theorem 4 implies that only the correctly-operating machine satisfies the
C-sequence of M. However the converse is not always true, i.e., the correctly-operating
machine does not always satisfy the C-sequence when the machine under test is not
initially in the starting state of the C-sequence of M. So the machine should be initially
in the starting state of the C-sequence when the Csequence is to be applicd.

This can be done by using the initializing sequence of length at most k+n, where
k=max [ki,....,ky] and n is the number of states, since the machine is
ki, ..., kp)-output-observable. Then we have the following corollary of Theorem 4,

Corollary 1: The C-sequence of an output-observable sequential machine M is a
checking sequence,

Since a checking sequence must check all transitions of the given state table, it
must pass through all transitions. Hence the input-output sequence oy, which is the
prefix of the Csequence w0, is shorter than every possible checking sequence, and
consequently shorter than the minimum length checking sequence. The length of
input-output sequence w;, which is the suffix of the C-sequence wi s, is
k=max [ ky,...,ky | . Hence the Csequence is not k longer than the minimum
checking sequence. In general, k is smaller than the number of states of M. Therefore,
the C-sequence® is nearly minimum. :

Example 2: Consider machine My, given in Table 3, which is (1,
2)-output-observable with respect to output function z,xz,. Let k=max [ 1, 2] =2, By
applying an arbitrary input sequence of length k and observing the output sequences of
length 1 and 2 ar the output terminals z; and z; respectively. we can establish the
initial state and the final state. Suppose that the machine is in the state 1. then the
shorter input-output sequence w;, that passes through all transitions of M., is
obtained as follows:

Input 0 0 0 1 1 1 0 1 0 1
State 1 4 5 5 1 2 2 3 3 4 3
% 0 1 1 1 0 ]
Ou
TOM agaf el 30 o) ot wimell T B sl

As the final state is 5, the following sequence is an input-output sequence w; of
length 2 starting at the state 5:

Input 0 0
State 5 5 5
23 1 1
Output
- ] 1 1

*  The problem of constructing the C-sequence ean be reduced to the rravelling salesman problem.
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Then a checking sequence for M; is the following:

Input 0 0 0 1 1 1 0 1 ] 1 L] ]
State il ol il sondops® Sdiylkaik el 4a 0Bl snBfiim
i Gl gisurd a1 @8 Mo ssiiopald sdio sl gl 1o o1 leil
" -0
e § o Qasnstipse ] ol Qe GonsugenD @b loQes o 1 11
5. Conclusion

In this paper we have described a procedure for the modification of a given

sequential machine to an output-cbservable one by adding minimum number of extra

outputs, and showed that for an output-observable sequential machine we can organize

a nearly minimum checking sequence systematically, This procedure is mainly based

upon the fact that the outputobservability of a sequential machine is equivalent to the

semi-FSR realizability of it. Hence it may be desired to find a more efficient state

assignment for a minimum stage semi-FSR realization.
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