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Abstract

In this paper, two types of easily testable machines are introduced, the stateshiftable
machine and the sutput-ohservable machine. Design procedures are presented in which an arbitrary
machine is angmented to these easily testable machines by adding extra inputs or outputs. Efficient
procedures are also described for designing checking experiments for such machines.

1. Introduction

For sequential machines several authors!)~8) have considered the fault detection
problem as an identification problem of sequential machines, that is, finding an
input-output sequence which describes a given machine uniquely. A number of these
papers are based on a method given by Hennic?) for designing checking experiments,
called the transition checking approach. His method yields good results for machines
that possess a distinguishing sequence, and for machines that are reduced, strongly
connected, and such that the actual machine has no more states than the correctly
operating machine. However, for machines which do not have any distinguishing
sequences, Hennie's procedure yields very long experiments, which makes it
impractical. Therefore, several methods have been proposed of modifying a given
sequential machine into a new one for which a short checking experiment can casily be
found3-7)=13), These include 1) a method of adding extra outputs”)#) and 2) a
method of adding extra inputs®’~!!), For an nstate m-input symbol machine, the
former gives a bound on the length of checking experiments that is approximately
mn?, and the latter gives a bound of mn®,

In this paper, two types of easily testable machines are introduced, the
state-shiftable machine and the outpui-observable machine. First half of this paper
describes a design procedure in which an arbitrary machine is augmented to a
stateshifrable machine by adding two special input symbaels to the original machine.
An clficient procedure is also described for designing checking experiments for the
state-shiftable machines. For an n-state m-input symbol machine, this procedure gives a
bound on the length of checking experiments that is approximately mn[logan], where
the square brackets denote “the smallest integer greater than or equal to the number
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inside the brackets'.

The second half of this paper presents a design procedure in which an arbitrary
machine is augmented to an output-cbservable machine by adding a minimum number
of extra outputs. For the k-output-cbservable machines, an input-output sequence
@y, such that w, is an input-output sequence which passes through all the
transitions of the given state table and <; is an arbitrary inout-output sequence of
length k, can be shown to be a checking experiment, and hence nearly minimum
length checking experiments are obtained.

2. State-Shiftable Machines

The sequential machines considered in this paper are assumed to be finite state,
synchronous, and deterministic Mealy machines, and don’t require to be reduced,
strongly connected, or completely specified, The machine M will be represented by a
quintuple M = (S,1,08,),) where 5 = {5,.5;,. ,.5,1} is a finite set of states, | =
{lida,... I} isa finite set of input symbols, 0 = {04,042, ....01} is a finite set of
output symbols, & : Sx1—+ § is called the next state function, and A : Sx1-+ 0 is called
the output function. :

Definition 1: A sequential machine M is called stateshiftable if M contains a
2-column submachine isomorphic to a binary shift register,

Consider a p-stage binary shift register in Fig. 1. Let Y,, Y3, ...,Y be the state

: Ohatput
i‘“w;—- ¥, ———‘ Vi i ¥p T

Fig. 1 The p-stage binary shift register

variables. let X be the input variable and let Z be the output variable. For the pstage
binary shift register, a p-tuple state assignment Y,Y; ...Yp can be found for each
state such that

1) YieHl) = ¥i_q4(t) for i=2,3,. ... p.

2) Ny (+1) = X(t),
and

3)  Z(t)=Yy(n),
where Y, (1), Ya(8),....¥p(t), X(t), and Z(t) are the values of ¥y, Y3, ... Yo, X,
and Z at time t, respectively.

Then it is easily seen that any input sequence of length p is both a distinguishing

sequence and a synchronizing sequence, and that Y ¥y q .. ¥, is a transfer sequence

- T .
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of length p to carry the p-stage binary shift register to state S; with state assignment
Y, ¥z...Y,

Hence, we have the fulluwing theorem.

Theorem 1: An n-state stateshiftable machine possesses 1) a distinguishing
sequence of length [logyn] which is also a synchronizing sequence, and 2) for each
state S;, a transfer sequence of length at most [logyn] which transfers the machine
from an arbitrary state to state §;.

Let M = (S1,08)) be a given machine, where § = {8,,8;,....8,}, I =
{[I,[,,. . .,[m}, and 0 = {Di,ﬂi,. i ,01}. Then we can give a procedure for
augmenting the given machine M so that the augmented machine M* is state-shiftable.

Augmentation Procedure:
1) Add new states 5,471,542, .-- 53" to M if n is not an integral power of 2,
where n' = 2P and p = [loggn].
2)  Assign the pbit binary codes to all states such rthat each srate has only one
llEiElll‘l:Ie:lll:.
3)  Add new input symbaols €p, €;, to M. The next state function & and the output
function A for the new input symbols €,, €; are defined as:
For each state S;, with state assignment ¥,¥; ... ¥, 8(S;,€)=5; and
(S, €1) = Sg, and  M(Si.€0) = M(Sj,€1) =0y if Yp =0
=0; if Yp=1

where S and Sy have state assignment 0Y,Ys ... Y, and 1Y, Y5 ... Y, 3,

respectively,

The effect of this state transition is to shift the state assignment one digit to the
right and introduce a zero or a one as new left most digit according to input € or €,
respectively, Thus, this 2-column submachine restricted to inputs €,.6; i isomorphic
to the pstage binary shift register. Hence the augmented machine M* is
state-shiftable.

Example: Consider machine A given by Table 1. Machine A is not strongly
connected and has not any distinguishing sequence. By applying the above procedure,
we obtain the augmented machine A* shown in Table 2. A* has a distinguishing
sequence €9€ which also a synchronizing sequence whose final state is §. Transfer
sequences are shown in Table 3.

Table 1 Machine A

\-\ input
0 1
Shlex

51 52 (1) 51 (1)
Sa R 53 (0}
53 Sz2(0 ==f1)

The dash means “don’t-care.™
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Table 2 Augmented machine A*

T input
Hﬁ‘i_h o i g 3
afate "
L1] 51 Sz11) 51 (1) Sy () 53 (0]
] Sa Sa () Sy (1) 53 (1)
1 83 Sz () ==L Sa () Sq (0]
11 Sa s Sz (1) 54 (1)

Tahle 3 Transfer sequences Tii) for machine A*®

T(1) T(z) T3} Ti4)

A ] E1€p €; E1€]

“ A " means che null sequence,

3. Checking Experiments for State-Shiftable Machines

In this section we consider checking experiments for the state-shiftable machines,
The principle of our method is mainly based on those of Hennie?) and Hsieh®), and
we assume that readers are familiar with the principle of thase methods. Assume thar
the class of allowable failures satisfies the following conditions:

1)  Any failure which occurs is assumed to occur throughout the test.
2}  Failures don’t increase the number of states,

Let M=(5,1,05) be an n-state m-input stateshiftable machine. Let X3 be an
input sequence of length [logzn] which is both a distinguishing sequence and a
synchronizing sequence. Let S) be the final state resulting from the application of
H3. The transfer sequence of length at most [logzn] to move M from state §; to state
S; is denoted by T(i).

The checking experiment consists of two parts. The first part of the experiment
verifies that Xy is both a distinguishing sequence and a synchronizing sequence, and
that T(i} transfers the machine from state 5, to o5 and have the form:

Input: X4 (i) X4 Xd
State: — 5 5 5 5
Cutput: - 2 Z |

for all states §;.

The second part of the experiment is to be designed to check all the transitions
and have the form:

Input: X3 Ti1) lj Xa
State: — S S; S5 = 8(8;, ) S
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Cutput: 7 Oy = MSi, 1) Zij
for all states S; and inputs L.
Then we have the following checking experiment:

Input: My T1) XaXq TI(2) NaXy...Xd Tin} XaXg
State: — S 5 5 Ss LT Sp 5y

) LhXg T X4...Xg Ti) LXq...Xg T} ImX4
5 5 5 5 81 5 5y Sn
b
In this checking experiment, the initializing part is preset, and hence the total
checking experiment is preset, and thus is casy to be applied to the tested machine,
Let us derive the bound on the length of the checking experiment. Since the
machine M is assumed to be a stateshiftable machine, 1Xgl = [logan] and IT(i)l
(logzn] for i = 1,2,... n, where 1XI is the length of X.
From the organization of the checking experiment, it can be seen that the total
length of the checking experiment is at most

X1+ £ (170 12X, 1)+ E B(1TO1+1,1+1X)

~@raDIX, |+ BTG +ma(1X, 1 +1)+m 2 TG
=(2n+1)[log n]-+ H[lﬂgan]+mﬁ{'[luggn] +1)-+mnllog_n]

={3n+1) [logznl -+ mn{EElngzn] + 1}:mn[hg=n]

Namely, the order of its length is mn[logan] which is smaller than the best order
mn? obtained in the previous methods7)~11):

Example: Let us construct a checking experiment for machine A* given by
Table 2. X4=€,€, is both a distinguishing sequence and a synchronizing sequence whose
final state is Sy, Transfer sequences T(i) from state §; to each state §; are shown in
Table 3.

The total checking experiment is:

ea€o T 1 )€n€otoeo T 2)E0E0 € Co T(3)eno€ncoT{4)€oEocna T\ 1 J0egEq

T(1)1€a€0T(1)€a€0 €0 T(1)E1 0€0 T(2)1 €0 T(2)En €060 T(2)€1Ea€a T(3)

Oenep T{ 31 €g€a T 3}&.}50E.}T{.’i}slenen‘l‘{-i}eneﬂen'l‘{-ijflE.,eﬂ
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4. Output-Obvervable Machines

The sequential machines considered in this section are assumed to be reduced
and strongly connected Mealy machines, such that binary codes are already assigned to
their output symbols, ie., the output function is represented, by a direct product,
Z) X273 X...%zp, of binary output functions 2, . . . ' 2p.

Definition 2: A partition on a set of states S is a collection of disjoint subsets
of S, called blocks such that their set union is 5. A relation = () on § corresponding
to a partition 7 is a relation such that §= §; (7) for §;, 5;€S if and only if §; and §;
belong to the same block of .

Definition 3!4); The transition graph of a partition 7 is a graph in which cach
vertex corresponds to a block of 7 and there is an arc from vertex v; to vertex v if
and only if there is a state Sy€B; (B is the block of corresponding to vertex v} and
an input I; such that 8{5;.I}) = S, ij.'A partition 7 is a shift register partition
(SRP) if and only if the transition graph of 7 is a subgraph of some Good's diagram.
7 has length of £ if it is a subgraph of the Good’s diagram of an ¢-stage shift register,

Table 4 Machine B .

input
0 1
state

8, Sq (0) 82 (0)
52 53 (0) Sz (0)
53 54 (1) 53 (1)
Sa 55 (1) s (1)
Sg Sg (1) 81 (1)

Fig. 2 (a) Transition graph
(b) Good's diagram for a 2-stage shift register
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Example: Consider machine B given by Table 4 and a partition m = [8) ;5255 ;
S.: S:|. We obtain the transition graph shown in Fig. 2 {a). This transition graph is a
subgraph of the Good's diagram of a 2-stage shift register shown in Fig. 2 (b).
Therefore, the partition 7 = [S; ;5253 ; Sa ; Sg] is an SRP.

Definition 4: A sequential machine M is called ki ks .., kpﬂllpufﬂbmlﬂ
with respect to the output function z, X2z ...% 2, and a partition 7 if the following
conditions are satisfied:

1) The knowledge of the present state of M is sufficient to uniquely
determine the succeeding output sequence of length ki observed at the
output function z; for every j (Kj<p).

2)  Let pj be the output sequence of length ki observed at zj when the initial
state is S;. Then S; =8; (m) if and only if (Ki1. - - - Hip) = (Kijs - . - Hjp) for
all §; and §; €5.

When 7 is the zero partition, M is called output-observable.

Example: A sequential machine B shown in Table 4 is l-output-observable with
respect to 2, and ™, = [5:5; ; 53545s]. A sequential machine B* shown in Table 6
is 1,2-output-observable with respect to z; x 23 and the zero partition, and thus B¥
is output-observable. :

For a given machine M with a binary output function 2, we can find 2 minimum
partition @ and a minimum integer k such that the machine M is k-output-observable
with respect to z and 7. This method is shown in the following

Procedure A:

1) Setw(0)=1and =1,

2)  For every state §;, test whether all the output sequences of length € observed at
the output function z with the machine M initially in state S; are the same.

If “no™ for some state S;, set 7 =m{€-1) and k=10-1, and stop. If “yes" for all

states, then define a relation= (m({)) such that 8;=S5; (n(¥)) if and only if

ui(2) = py(9), where py(R) is the output sequence of length € corresponding to
state Si'
3) 1 m(€) =0, then set w=0 and k = ¢, and stop. If m(R) =n(2-1), then set w = wi{¥)

and k = 81, and stop. Otherwise, set £= ¥+ 1 and go to step 2).

Suppose that, for a given machine M, 7; and k; (I<i<p) have been obtained by
means of Procedure A, then M is ki-output-observable with respect to the outpue
function z; and the partition m; for each i (IKi<p). If mywy ... mp = 0, then M is
output-observable. If 7,73 ... >0, then we have the following theorem.

Theorem 2'3): The necessary and sufficient condition for a sequential machine
M to be modified by adding a binary ocutput functions wy w3 . .. w; so that it will be
kykz, ... kpdiz, ... Jyoutput-observable with respect to the output function
ZyXZg X ... NZp X Wy XWz X...xwy is that there exist a SRP's 7,,72,....7 of
length €,, %;, ..., £, respectively, such that mymy. . . mpryTa. .. 7, =0,

Therorem 2 shows that if we can find the least possible number of SRP's
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TiTa, .. .5 Ty such that mymy .. %775 .. .7, =0, then we can modify the machine M
to an output-observable one by adding a minimum number of extra outputs. the
problem of generating all the SRP's for a given machine has been investigated by
Nichols'4).

Suppose that we have obtained the least number of SRP's 7,75, ... 7, satisfying
the condition of Theorem 2. Then, we can construct binary output functions wj
(I<j<s) satisfying the condition of Theorem 2 as follows: Let T T ,ngj be the
state assignment variables of the {jstage shift register corresponding to SRP 7, and let
{yj-l.y}g. e ..}r}QjJ be a binary code corresponding to state S;. Note that each state is
given a single coding. Define a binary output function wij, such that w;(S;) = }rjgj for

state 5;.
I

Cambinational

Y1 L — — — —

Circuit BT

¥

T8§ [rtonio—rrr 084,

Fig. 3 Feedback shift register circuit

Summarizing this argument, we can present the following procedure for
modifying a given machine so that it will be output-observable by adding a minimum

number of extra outputs.

Augmentation Procedure:

1}  Given a sequential machine M having binary output functions 2,24, . .. 2, find
a minimum partition m; and k; for each z; (1=i<p) by means of Procedure A,

2] Bets=1.

3) Test whether there exists SRP's 7,.,73,...,T;, such that
WMy ... ApTiTs .. Ty =0
If ““yes”, then go to step 4).
If “na™, then set s = 5+ 1, and repeat step 3).

4)  Let Yin.¥jz,. .. ,‘E'j['j be the state assignment va.riablﬁ :_rf the -stage shift
register corresponding to SRP 7; (1<j<s). and let (y}y, . .. ;:.r}p_jj be 2 binary code
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corresponding to state §;. Add binary output functions wi{l<j<s) to M, such
that w;(8;) = }r;EJ for each state S;.

Example: Consider machine B given by Table 4 which is not output-observable.

Let us modify machine B to an ourput-observable machine. The determination of a

minimum number of additional output function is shown below, where each step is

indicated by the corresponding number.

1) Applying Procedure A, we can obtain k; =1, and m = 535z ; 5354551

2P =1

3)  Testing whether there exists an SRP 7, such thatm1, = 0, we can find an SRP
T1 = I8, :5:55:54;5s1.. Indeed, mmy = [§; : 8355 : 84 ; S5]" [5452
S25255] = [51 : 52 ; 53 .54 ; 85| = the zero partition. The transition graph of
7) is a subgraph of the Good's diagram for a 2stage shift register shown in Fig.
2 (b). By giving a unique coding to each state in accordance with the labeling of
the corresponding states in the Good’s diagram, we can obtain a state assignment
shown in Table 5.

4] By adding output function z; such that z; = ¥, we can obtain the augmented
machine B* shown in TAble 6 which is 1 2-outputobservable with respect to
2y X 23 and the zero partition.

Table 5 State assignment

¥ Y3
Sy Q 1
Sq 0 0
Sa Q ]
54 1 0
Sg 1 1

{ |
|
|

Table & Augmented machine B*

. Input
-, i 1
state H\"'\-
51 54 (0 1) S2(0 1)
Sa S3 (0 0) Sq (0 0)
S3 S4(1 0} Sall 0}
Sa Sg il 0} S5 (1 0)
Ss Sg(1 1) Sp(1 1)

5. Checking Experiments for Output-observable Machines

In thizs section we consider fault detection experiments for k|,kg e _.kp
-output-ochservable machines. Let M be the fault-free machine with the output function
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7y %23 % ... % 2y and let M’ be the tested (possibly faulty) machine with the output

function 2] x 23 x... ‘.-cz;,. Assume that the class of allowable failures satisfies the

following conditions.

1)  Any failure which occurs is assumed to occur throughout the test.

2) A failure which increases the number of statez in the machine does not occur.

3) A faulty machine M is still ki.ka, ... kp-output-observable with respect to
2y X 23 X ... % zp and some partition , i.e., the knowledge of the present state of

M’ is sufficient to uniquely determine the succeeding output sequence of length

ki ohserved at the output function =] for all i {(1=<p).

Under these assumptions, let us design a checking experiment. Given a
ky.ky, ... kp-output-observable macnine M, let w, be an input-output sequence that
passes through all the transitions of the state table of M, and let w; be an arbitrary
input-output sequence of length k, where k = max{k, ks, ... ,lrp}. It will be proved in
the following theorem that the input-output sequence tyea, called Csequence, is a
checking sequence.

Theorem 3'3): Let M be an output-observable machine, Then a machine
satisfying the Csequence of M is isomarphic to M.

Theorem 2 implies that only the correctly operating machine satishies the
Csequence of M. However the converse is not always true, ie., the correctly operating
machine does not always sarisfy the Csequence when the machine under test is not
initially in the starting state of the Csequence of M. 8o the machine under test should
be initially in the starting state of the Csequence when the Csequence is to be
applied. This can be donc by applying a homing sequence. For k; ka, . .. kp-output-
observable machine, any input sequence of length k (k = max{k.,k,, i ,LP}} is a
homing sequence.

Example: Consider machine B*, given by Table 6, which is 1,2-output-
observable with respect to output function ) x 23 and the zero partition. By applying
an arbitrary input sequence of length 1 and 2 at the output terminals z; and z,,
respectively, we can establish the initial state and the final state. Suppose that the
machine is in state S;, then the shortest input-output sequence @, that passes
through all the transitions of B*, is obtained as follows;

Input: 0 0 0 1 1 1 0 1 0 1
State: 5 1 Sa Si Sg 51 Sa Sz Sg Sg 54 Se
Output: 0 1 1 1 0 0 0 1 1 1

(OO 3 M2 g Ve e 9 0

As the final state is Sy, the following sequence is an input-cutput sequence (i,
of length 2 starting at the state Ss:

Input: 0 0
State: 8 8 BSs
Output: e

1 1
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Then a checking experiment for machine B* is the following:

Input: 0 0 0 1 1 1 0 1 0 1 0 0
State: S-| Sa 55 Ss 51 Sa Sg Sa Sa S Se Si
Output: U T, T i TR e SR

1 o 1 1 1 0 0 0 0 0 1
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