
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.2 FEBRUARY 2000
151

PAPER

Parallel Algorithms for the All Nearest Neighbors

of Binary Image on the BSP Model

Takashi ISHIMIZU†, Student Member, Akihiro FUJIWARA††, Michiko INOUE†,
Toshimitsu MASUZAWA†, and Hideo FUJIWARA†, Members

SUMMARY In this paper, we present two parallel algo-
rithms for computing the all nearest neighbors of an n × n
binary image on the Bulk-Synchronous Parallel(BSP) model.
The BSP model is an asynchronous parallel computing model,
where its communication features are abstracted by two pa-
rameters L and g: L denotes synchronization periodicity and
g denotes a reciprocal of communication bandwidth. We pro-
pose two parallel algorithms for the all nearest neighbor prob-
lems based on two distance metrics. The first algorithm is
for Lp distance, and the second algorithm is for weighted dis-

tance. Both two algorithms run in O(n2

p
+ L) computation time

and in O(g n√
p

+ L) communication time using p (1 ≤ p ≤ n)

processors and in O(n2

p
+ (d + L)

log
p
n

log(d+1)
) computation time

and in O(g n√
p

+ (gd + L)
log

p
n

log(d+1)
) communication time using

p (n < p ≤ n2) processors on the BSP model, for any integer
d (1 ≤ d ≤ p

n
).

key words: parallel algorithm, BSP model, all nearest neighbors

1. Introduction

The all nearest neighbors problem (ANNP) for a black
and white binary image is a problem to compute for
each black pixel, the coordinates of the nearest black
pixel. Computation of the all nearest neighbor for a
binary image is an important operation because of its
applications in various areas such as image processing,
computer graphics, pattern recognition and so on.

An O(n2) time sequential algorithm [2] was pro-
posed for ANNP of an n × n binary image. The se-
quential algorithm is obviously time optimal because
the size of an input image is n2. In this paper, we con-
sider algorithms for ANNP on the Bulk-Synchronous
Parallel(BSP) model. The BSP model was proposed
by Valiant [6] as a parallel computation model with fea-
tures of currently realized parallel machines, and has
great interests in these years.

In this paper, we propose two parallel algorithms
for ANNP of an n × n binary image, one is for Lp dis-
tance and the other is for weighted distance. Both of
the distances are generalizations of many distances, for

Manuscript received February 19, 1999.
†The authors are with the Graduate School of Infor-

mation Science, Nara Institute of Science and Technology,
Ikoma-shi, 630–0101 Japan.

††The author is with the Department of Computer
Science and Electronics, Kyushu Institute of Technology,
Iizuka-shi, 820–8502 Japan.

example city block, chessboard, chamfer and Euclidean
distances. Therefore these two distance metrics contain
almost all kinds of distances used in image processing.

Both of our two algorithms run in O(n2

p + T comp
prefix

(n, n, p)) computation time and in O(g n√
p + T comm

prefix

(n, n, p)) communication time using p (1 ≤ p ≤ n2) pro-
cessors on the BSP model, where T comp

prefix(n, n, p) and
T comm

prefix(n, n, p) denote computation time and commu-
nication time for 2D prefix operations of an n×n array
using p processors, respectively.

We also showed T comp
prefix(n, n, p) = O(n2

p + L)
and T comm

prefix(n, n, p) = O(g n√
p + L) if 1 ≤ p ≤ n,

and T comp
prefix(n, n, p) = O(n2

p + (d + L) log p
n

log(d+1)) and

T comm
prefix(n, n, p) = O(g n√

p + (gd + L) log p
n

log(d+1)) if n <

p ≤ n2 for any integer d (1 ≤ d ≤ p
n). Therefore our all

nearest neighbor algorithms are cost optimal∗ for wide
range of the number of processors. It is worth while
noticing that the proposed 2D prefix algorithms can be
applied to various problems since the prefix operation
is one of the basic operations for parallel processing.

2. Preliminaries

2.1 The All Nearest Neighbors of a Binary Image

Given an n × n image I, let I[x, y] ∈ {0, 1} denote a
value for a pixel (x, y) of I(0 ≤ x ≤ n−1, 0 ≤ y ≤ n−1),
where x(resp. y) stands for row (resp. column) index.
We assume a pixel (0, 0) is on the top left corner of the
image. We call a pixel (x, y) a black pixel if I[x, y] =
1, otherwise we call the pixel a white pixel, and Black
(resp. White) denotes a set of all black pixels (resp.
white pixels) in the input image.

In this paper, we use two distances, weighted dis-
tance [1] and Lp distance [5].

The weighted distance dw(p1, p2), between two pix-
els p1 = (x1, y1) and p2 = (x2, y2), is defined as follows.

dw(p1, p2) =

w0|x1 − x2|+ w1|y1 − y2|
(if |x1 − x2| ≥ |y1 − y2|)

w1|x1 − x2|+ w0|y1 − y2|
(otherwise)

∗A parallel algorithm is called cost optimal if product of
its running time and the number of processors is equal to
lower bound of sequential time for the problem.

152
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.2 FEBRUARY 2000

Fig. 1 An examples of the all nearest neighbors:(a) an input
image I and (b) the L2 distance nearest neighbors of I.

where w0 and w1 are nonnegative constants. The
weighted distance is generalization of the following dis-
tances [4].

• city block distance (if (w0, w1) = (1, 1))
• chessboard distance (if (w0, w1) = (1, 0))
• quasi-Euclidean distance

(if (w0, w1) = (1,
√
2− 1))

The Lp distance dLp (p1, p2) (1 ≤ p), between two
pixels p1 = (x1, y1) and p2 = (x2, y2), is defined as
follows.

dLp(p1, p2) = (|x1 − x2|p + |y1 − y2|p) 1
p

To avoid confusion with the number of processors
p, we use Lq distance instead of Lp distance hereafter.

The Lq distance is also generalization of the fol-
lowing distances.

• Euclidean distance (if q = 2)
• city block distance (if q = 1)
• chessboard distance (if q → ∞)
The all nearest neighbors problem (ANNP) of a

binary image is to find for each black pixel, the nearest
black pixel except itself. We call the nearest black pixel
nearest neighbor (See Fig. 1.). Formally, the ANNP
requires to compute an array of coordinates NN [x, y]
such that

NN [x, y] =

(v,w) s.t. ((v,w) ∈ Black−{(x, y)})
∧ (∀(v′, w′) ∈ Black−{(x, y)},
d((x, y), (v,w)) ≤ d((x, y), (v′, w′)))

(if(x, y) ∈ Black)
undefined (otherwise)

where d((x1, y1), (x2, y2)) is the distance between two
pixels (x1, y1) and (x2, y2). If the distance is the
weighted distance (resp. Lq distance), we call ANNP
the weighted distance all nearest neighbor problem
(resp. the Lq distance all nearest neighbor problem).

2.2 Bulk-Synchronous Parallel Model

In this paper, we use the Bulk-Synchronous Paral-
lel (BSP) model. The BSP model was proposed by
Valiant [6] as a parallel computation model with fea-
tures of currently realized parallel machines.

The BSP model consists of the following three
equipments: (1) a set of processors with local memory,
(2) a router or a communication network that delivers
messages among the processors in point-to-point fash-
ion and (3) a facility for barrier synchronization among
all of the processors.

A computation on the BSP model consists of a se-
quence of supersteps. For simplicity, we assume that, in
each superstep, processors either perform local compu-
tation without any communication, or perform commu-
nication without local computation. We call a super-
step for local computation (resp. for communication) a
computation superstep (resp. a communication super-
step).

The BSP model is characterized by the following
parameters p, L and g.

• p: the number of processors.
• L: the synchronization periodicity, i.e. minimal

time needed for synchronizing processors.
• g: a reciprocal of communication bandwidth, i.e.

time which the router needs to deliver a message.
From the above definition, a computation super-

step with at most w local operations on each processor
can be executed in O(w + L) time. A communication
superstep, where each processor sends and receives at
most h messages, can be executed in O(gh + L) time.
We call time to execute all computation supersteps
(resp. all communication supersteps) computation time
(resp. communication time).

2.3 Input Image

In this paper, each processor is denoted by Pi,j (0 ≤
i, j ≤ √

p − 1). Let I[x, y] (0 ≤ x, y ≤ n − 1) be an
input image of an n × n binary image. For simplicity,
we assume that n = k

√
p for some positive integer k.

We also assume that the input image is partitioned into√
p×√

p sub-squares of size n√
p× n√

p , and each processor
Pi,j initially has a sub square Ii,j defined as follows.

Ii,j [g, h] = I
[
i n√

p + g, j n√
p + h

]
(
0 ≤ g ≤ n√

p − 1, 0 ≤ h ≤ n√
p − 1

)

2.4 Primitive Operations on BSP

In this section we introduce two fundamental opera-
tions, a vertical 2D prefix operation and a diagonal 2D
prefix operation, used in this paper. In the following,
⊕ denotes a binary associative operator.

Definition 1: (vertical 2D prefix operation)
Given an n × n array A[x, y] (0 ≤ x ≤ n − 1, 0 ≤ y ≤
n − 1), the vertical 2D prefix operation computes the
value

B[x, y] = A[0, y]⊕ A[1, y]⊕ . . . ⊕ A[x, y]

for each (x, y).

ISHIMIZU et al.: PARALLEL ALGORITHMS FOR THE ALL NEAREST NEIGHBORS OF BINARY IMAGE ON THE BSP MODEL
153

Definition 2: (diagonal 2D prefix operation)
Given an n × n array A[x, y] (0 ≤ x ≤ n − 1, 0 ≤ y ≤
n − 1), the diagonal 2D prefix operation computes the
value

B[x, y] =

A[0, y−x]⊕A[1, y−x+1]⊕. . .⊕A[x, y]
(if x ≤ y)

A[x−y, 0]⊕A[x−y+1, 1]⊕. . .⊕A[x, y]
(otherwise)

for each (x, y).

Intuitively, the vertical 2D prefix operation com-
putes the prefix for each column of a 2D array, and the
diagonal 2D prefix operation computes the prefix for
each diagonal sequence of a 2D array.

We assume that an input array of the prefix com-
putation is partitioned and stored into each processor
in the same fashion as an input image of ANNP. We
assume that Ax,y denotes an input sub-array stored in
a processor Px,y .

We can obtain the following lemma for the prefix
operations on the BSP model.

Lemma 1: Both of vertical and diagonal 2D prefix
operations can be executed in O(n2

p + L) computa-
tion time and O(g n√

p + L) communication time using

p (1 ≤ p ≤ n) processors, and O(n2

p + (d + L) log p
n

log(d+1))

computation time and O(g n√
p +(gd+L) log p

n

log(d+1)) com-
munication time using p (n < p ≤ n2) processors, for
any integer d (1 ≤ d ≤ p

n).

Proof:
(vertical 2D prefix operation)
Juurlink and Wijshoff [3] proposed an algorithm on the
BSP model for a similar 2D prefix operation. An input
of the algorithm is p × k array, where each processor
holds one row of the array. An output of the opera-
tion is prefix computation for each column of the array.
Using p processors, their algorithm runs in O(k + L)
computation time and O(gk + L) communication time
if 1 ≤ p ≤ k, and in O(k+(d+L) log p

k

log(d+1)) computation

time and O(gk+(gd+L) log p
k

log(d+1)) communication time
if k < p processors, for any integer d (1 ≤ d ≤ p

k).
We use the above algorithm to our vertical 2D

prefix. We consider vertical 2D prefix operation for
columns on a set of processors P0,j , P1,j , . . . P√

p−1,j .
First we compute Ai,j [0, h]⊕Ai,j[1, h]⊕ . . .⊕Ai,j [n√

p −
1, h] for each column h (0 ≤ h ≤ n√

p − 1) on each
processor Pi,j , and store the results in A′

i,j [h]. Second
we compute the prefix of A′

0,j [h], A
′
1,j [h], . . . , A

′√
p−1,j [h]

for each column h (0 ≤ h ≤ n√
p − 1) by the 2D

prefix algorithm [3] for
√

p × n√
p array using

√
p pro-

cessors, and store the result in A′′
i,j [h]. Third, we

send A′′
i,j to a processor Pi+1,j for each processor Pi,j

if Pi+1,j exists, and execute the prefix computation

A′′
i−1,j [h]⊕Ai,j [0, h]⊕Ai,j[1, h]⊕ . . . , Ai,j [f, h] for each

row f (0 ≤ f ≤ n√
p − 1) and each column h (0 ≤ h ≤

n√
p − 1) on each processor. We can execute the first

and the third steps in O(n2

p +L) computation time and
O(g n√

p + L) communication time, and we can execute
the second step using the above prefix algorithm [3] by
setting k = n√

p . Therefore the lemma holds for the
vertical 2D prefix.
(diagonal 2D prefix operation)
Diagonal sequences have one remarkable difference
from vertical sequences; each diagonal sequence is on
diagonally arranged processors. For example, a di-
agonal sequence A[0, 1], A[1, 2], . . . A[n − 2, n − 1]
is on P0,0, P0,1, P1,1, . . . P√

p−2,
√

p−2, P√
p−2,

√
p−1,

P√
p−1,

√
p−1. We can compute the diagonal 2D

prefix with the same idea as the vertical 2D pre-
fix operation. Let DSL0, DSL1, . . . DSL√

p−1 be
sets of diagonal sequences whose left most ele-
ment is on a processor P0,0, P1,0, . . . P√

p−1,0, and
let DSU1, DSU2, . . .DSU√

p−1 be sets of diagonal se-
quences whose left most element is on a processor
P0,1, P0,2 . . . P0,

√
p−1, respectively. First, we com-

pute the diagonal 2D prefix operation for DSL0,
DSL2, DSL4, . . . DSL

2�
√

p−1
2 � and DSU2, DSU4, . . .

DSU
2�

√
p−1
2 � in parallel. This takes the same complex-

ity as the vertical 2D prefix because of the following
reasons. First both of size and length of each diago-
nal sequence on each processor are at most n√

p and the
number of processors used for each set are at most 2

√
p.

Second each set of diagonal sequences are on disjoint
sets of processors. Thus we can process the diagonal
2D prefix for each set independently.

We can compute diagonal 2D prefix for the other
diagonal sequences similarly. Therefore we obtain the
lemma. ✷

Let T comp
prefix(n, n, p) (resp. T comm

prefix(n, n, p)) denote
computation time (resp. communication time) for the
both of vertical and diagonal 2D prefix operations for
an n × n array using p processors hereafter.

3. Algorithm for the Weighted Distance All
Nearest Neighbors

3.1 Basic Idea

In this section, we present a parallel algorithm for
weighted distance all nearest neighbors and analyze its
complexity.

Fujiwara et al.[1] showed a parallel algorithm for
weighted distance nearest feature transform on PRAM.
This algorithm can be easily applied on the BSP model.

We show that weighted distance all nearest neigh-
bors can be solved similar method as weighted distance
nearest feature transform algorithm [1].

154
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.2 FEBRUARY 2000

Fig. 2 A pixel p = (x, y) and the four sets of pixels,
PXLN (x, y), PXLS(x, y), PXLE(x, y) and PXLW (x, y).

3.1.1 Algorithm for the Weighted Distance Nearest
Feature Transform

In this subsection, we briefly introduce the weighted
distance nearest feature transform algorithm [1] and its
complexity on the BSP model.

The nearest feature transform of a binary image
is an operation which computes, for each pixels, the
coordinates of the nearest black pixel.

Formally, the nearest feature transform requires to
compute an array of coordinates NBP [x, y] such that

NBP [x, y] = (v,w) s.t. ((v,w) ∈ Black)
∧ (∀(v′, w′) ∈ Black,

d((x, y), (v,w)) ≤ d((x, y), (v′, w′)))

where d((x1, y1), (x2, y2)) is the distance between two
pixels (x1, y1) and (x2, y2).

First we define four sets of pixels PXLN(x, y),
PXLS(x, y), PXLE(x, y) and PXLW (x, y) for a pixel
(x, y) (see Fig. 2).

For example, PXLN(x, y) is defined as follows.

PXLN(x, y)
= {(x − x1, y + y1)|1 ≤ x1 ≤ x,max
{−y,−x1} ≤ y1 ≤ min{n − 1− y, x1}}.

Using the above four sets, we compute the
weighted distance nearest feature transform in paral-
lel in the following three step.
(1) Find the nearest black pixel in PXLN for each pixel.
(2) Do the same procedure for each of PXLS, PXLE

and PXLW .
(3) Compute the nearest black pixel by selecting the
nearest black pixel among the above four pixels for each
pixel(x, y).

In the third step, each nearest black pixel can be
easily computed independently on each processor. Thus
we show how to find the nearest black pixel in PXLN

in the rest of this section.
For weighted distance, an important lemma was

showed in [1]. Using the lemma, we can compute the
nearest black pixel by prefix operations and some prim-
itive operations only.

Lemma 2: [1] Let q = (x, y), q1 and q2 be three pix-
els such that q1, q2 ∈ PXLN(x, y) and dw(q, q1) ≤
dw(q, q2). Then dw(q′, q1) ≤ dw(q′, q2) holds for any
pixel q′ = (k, y)(x ≤ k ≤ n − 1). ✷

Let NBPN [x, y] denote the coordinate of the near-
est black pixel of a pixel (x, y) in PXLN(x, y). In
addition, we consider the following two sets of pixels
DINW (x, y) and DINE(x, y).

DINW (x, y) = {(x − i, y − i)|0 ≤ i ≤ min{x, y}}
DINE(x, y)
= {(x − i, y + i)|0 ≤ i ≤ min{x, n − 1− y}}

(Note that DINW (x, y) ∪ DINE(x, y) = PXLN(x, y)
−PXLN(x − 1, y).)

Let NBPNW [x, y] and NBPNE [x, y] denote co-
ordinates of the nearest black pixel for (x, y) in
DINW (x, y) and DINE(x, y), respectively. From
Lemma 2, NNN [x, y] is one of NNN [x − 1, y],
NNNW [x, y] and NNNE[x, y].

First, we compute NBPNW [x, y] and NBPNE

[x, y] for each (x, y) (0 ≤ x ≤ n − 1, 0 ≤ y ≤ n − 1).
We can compute NBPNW [x, y] and NBPNE [x, y] using
prefix operations because of the following lemma.

Lemma 3: [1] Let q = (x, y), q1 = (x1, y1) and q2 =
(x2, y2) be three pixels such that q1, q2 ∈ DINW (x, y)∪
DINE(x, y) and dw(q, q1) ≤ dw(q, q2). Then x1 ≥ x2

holds. ✷

This lemma implies that the nearest black pixel
in DINW ∪ DINE to (x, y) has the largest row index
among all black pixels in DINW (x, y) ∪ DINE(x, y).
Therefore we can compute NBPNW , NBPNE by using
two diagonal prefix maxima operations.

Next we compute NBPN [x, y] for each (x, y).
Let NBPDI [x, y] denote coordinates of nearer one of
NBPNW [x, y] and NBPNE [x, y]. To compute the
NBPN [x, y] by prefix operation, first we compute fol-
lowing value F (x, y) for each (x, y),

F (x, y) = −w0g + w1|y − h|
where NBPDI [x, y] = (g, h).

We can compute NBPN [x, y] by comparing the
value F because of the following reason. Let
NBPDI [x1, y] = (g1, h1), NBPDI [x2, y] = (g2, h2), and
assume x ≥ x1, x2 and dw((x, y), NBPDI [x1, y])
≤ dw((x, y), NBPDI [x2, y]). In this case, the followings
hold.

F (x1, y) ≤ F (x2, y)
−w0g1 + w1|y − h1| ≤ −w0g2 + w1|y − h2|
w0(x − g1) + w1|y − h1| ≤ w0(x − g2) + w1|y − h2|
dw((x, y), NNDI [x1, y]) ≤ dw((x, y), NNDI [x2, y])

Therefore we can compute NBPN [x, y] by computing

ISHIMIZU et al.: PARALLEL ALGORITHMS FOR THE ALL NEAREST NEIGHBORS OF BINARY IMAGE ON THE BSP MODEL
155

prefix minima of F (k, y)(0 ≤ k ≤ n − 1) for each col-
umn.

For the prefix operations, we can use the diagonal
2D prefix and the vertical 2D prefix described in Sect. 2,
and it needs only O(n2

p) local computation and O(n√
p)

communication except these prefix operations. Thus
the following lemma is also obtained.

Lemma 4: For each pixel (x, y), the nearest
black pixels NBPN [x, y], NBPNW [x, y] and NBPNE

[x, y], which are in PXLN(x, y), DINW (x, y) and
DINE(x, y) respectively, can be computed in O(n2

p +
T comp

prefix(n, n, p)) computation time and in O(g n√
p +

T comm
prefix(n, n, p) communication time using p (1 ≤ p ≤

n2) processors on the BSP model.

For each pixel (x, y), the weighted distance near-
est feature transform can be computed from the near-
est black pixels NBPN [x, y], NBPS [x, y], NBPE [x, y]
and NBPN [x, y]. Thus, the following lemma is also
obtained.

Lemma 5: The weighted distance nearest feature
transform of an n × n binary image can be com-
puted in O(n2

p +T comp
prefix(n, n, p)) computation time and

in O(g n√
p + T comm

prefix(n, n, p) communication time using
p (1 ≤ p ≤ n2) processors on the BSP model.

See [1] for details of the algorithm.

3.1.2 Modifications for ANNP

In this subsection, we show how the weighted distance
nearest feature transform algorithm is modified for the
weighted distance all nearest neighbor algorithm.

The difference between two problems is, for a black
pixel, the nearest black pixel of the nearest feature
transform is the black pixel itself, but the one of the
nearest neighbor is another black pixel.

The difference is solved as follows. For black pixel
(x, y), the nearest neighbor in PXLN(x, y) is one of
the nearest black pixels among DINW (x − 1, y − 1),
DINE(x− 1, y+1) and PXLN(x− 1, y). Thus, we can
compute the nearest neighbor using NBPNW [x − 1, y
− 1], NBPNE [x − 1, y + 1] and NBPN [x − 1, y].

The algorithm consists of two steps. First, for
black each pixel (x, y), we compute nearest black
pixel NBPNW [x − 1, y − 1], NBPNE [x − 1, y + 1]
and NBPN [x − 1, y] in DINW (x − 1, y − 1), DINE(x
− 1, y + 1) and PXLN(x − 1, y), respectively. Next,
for each black pixel (x, y), select one of the black pixel
among NBPNW [x−1, y−1], NBPNE [x−1, y+1] and
NBPN [x − 1, y].

From Lemma4, these three black pixels can be
computed in O(n2

p +T comp
prefix(n, n, p)) computation time

and O(g n√
p +T comm

prefix(n, n, p) communication time using
p (1 ≤ p ≤ n2) processors on the BSP model. There-
fore, the following theorem is obtained.

Theorem 1: The weighted distance all nearest neigh-
bors of an n × n binary image can be computed
in O(n2

p + T comp
prefix(n, n, p)) computation time and in

O(g n√
p + T comm

prefix(n, n, p)) communication time using
p (1 ≤ p ≤ n2) processors on the BSP model.

From Lemma 1 and Theorem 1, the following corol-
lary is also obtained.

Corollary 1: The weighted distance all nearest
neighbors of an n×n binary image can be computed in
O(n2

p + L) computation time and in O(g n√
p + L) com-

munication time using p (1 ≤ p ≤ n) processors and
in O(n2

p + (d + L) log p
n

log(d+1)) computation time and in

O(g n√
p + (gd + L) log p

n

log(d+1)) communication time using
p (n < p ≤ n2) processors for any integer d (1 ≤ d ≤ p

n)
on the BSP model.

4. Algorithm for Lq Distance Nearest Neigh-
bors

4.1 Basic Idea

For each sub-image Ii,j (possessed by processor Pi,j),
we define four sub-images as in Fig. 3. For example,
DNi,j is defined as follows.

DNi,j =
{
(x, y)|

0 ≤ x ≤ i
n√
p
− 1, 0 ≤ y ≤ (j+1)

n√
p
− 1

}

We compute nearest neighbors of black pixels in
Ii,j for each of the above four sub-images. As a key
concept for reducing time complexity, we introduce base
pixels and candidate pixels. For sub-image A (one of
the above four sub-images), we call a pixel in Ii,j a
base pixel for A if it may have the nearest neighbor in
A. On the other hand, we call a pixel in A a candidate
pixel for Ii,j if it may be the nearest neighbor of some
black pixel in Ii,j . To compute the nearest neighbors in
A for Ii,j , it is obviously sufficient to compute nearest
pixels in the candidate pixels for each base pixel in Ii,j .

Fig. 3 Four sets for a processor Pi,j .

156
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.2 FEBRUARY 2000

We show how the base pixels and the candidate pixels
are determined and the number of the base pixels and
the candidate pixels is small. This helps us to reduce
time complexity for computing ANNP.

In the following, we show how to find the nearest
black pixel in DNi,j for each pixel in Ii,j in parallel. We
can find the nearest black pixels in the other sub-images
similarly, and we can find the nearest black pixels in Ii,j

using a known sequential algorithm [2].

4.2 Computing the Nearest Black Pixel in DNi,j

We first show how we can determine a base pixels in
Ii,j for DNi,j , and a candidate pixels in DNi,j for Ii,j .
For each column in Ii,j , we choose, as a base pixel, one
black pixel with the minimum row index from Ii,j (if
exists).

Definition 3: A set BaseN
i,j of base pixels in Ii,j for

DNi,j is a set of black pixels (x, y) such that x =
min{x′|(x′, y) ∈ Black ∧ (x′, y) ∈ Ii,j}

Since the number of columns in Ii,j is n√
p , we

choose at most n√
p base pixels in Ii,j for DNi,j . It

is obvious that a black pixel (x, y) ∈ Ii,j has its nearest
pixel in DNi,j only if (x, y) is one of the base pixels.

Next we show how we determine the candidate pix-
els in DNi,j for Ii,j . It is obvious that black pixels with
the maximum row index for each column in DNi,j are
nearer to all pixels in Ii,j than any other pixels in the
same column in DNi,j . In addition, we show the fol-
lowing two lemmas to reduce the number of candidate
pixels.

Lemma 6: If there exists at least two black pixels
in Ii,j , none of black pixels in DNi,j−3 is the nearest
neighbor of any black pixel in Ii,j

Proof: Let p0 = (x0, y0) and p1 = (x1, y1) be black
pixels in Ii,j , and p2 = (x2, y2) be a black pixel in
DNi,j−3. Then, |x0 − x1| < n√

p , |y0 − y1| < n√
p and

y0 − y2 > 2 n√
p hold.

dLq(p0, p1) = (|x0 − x1|q + |y0 − y1|q) 1
q

≤ 2
n√
p

< y0 − y2

dLq(p0, p2) = ((x0 − x2)q + (y0 − y2)q)
1
q > y0 − y2

Then, dLq(p0, p1) < dLq(p0, p2) holds. Thus, p2 is
not the nearest neighbor of p0. ✷

Lemma 7: If there exists a black pixels in Ii,k for
k (0 ≤ k < j), none of black pixels in DNi,k−2 is the
nearest neighbor of any black pixel in Ii,j .

Proof: Let p = (x, y) be a black pixel in Ii,j , p1 =
(x1, y1) be a black pixel in Ii,k and p2 = (x2, y2) be
a black pixel in DNi,k−2. Then, |x − x1| < n√

p and
y − y2 > (y − y1) + n√

p hold.

dLq(p, p1) = (|x − x1|q + (y − y1)q)
1
q

<

((
n√
p

)q

+ (y − y1)q
) 1

q

≤ n√
p
+ y − y1 < y − y2

dLq(p, p2) = ((x − x2)q + (y − y2)q)
1
q > y − y2

Then, dLq(p, p1) < dLq(p, p2) holds, and p2 is not
the nearest neighbor of p. ✷

From the above two lemmas, we define the candi-
date pixels as follows.

Definition 4:

1. If there are at least two black pixels in Ii,j , a
set CandidateN

i,j of candidate pixels in DNi,j for
Ii,j is a set of black pixels (x, y) such that x =
max{x′|(x′, y) ∈ Black ∧ (DNi,j − DNi,j−3)}

2. If there is only one black pixel in Ii,j , a set
CandidateN

i,j of candidate pixels in DNi,j for Ii,j

is a set of black pixels (x, y) such that x =
max{x′|(x′, y) ∈ Black ∧ (DNi,j − DNi,k−2)},
where Ii,k is the right most sub-image which
contains at least one black pixel in among
{Ii,0, Ii,1, . . . , Ii,j−1}
We can compute the candidate pixels and the base

pixels by prefix operations for each column.
We describe details of our algorithm in the follow-

ing.
[Algorithm for computing nearest neighbors for DNi,j]

Step 1: (Computation of candidate pixels)
(1) For each pixel (x, y), set A[x, y] = (x, y) if a pixel

(x, y) is black, otherwise set A[x, y] = (−∞,−∞).
(2) Compute prefix maxima A′ of A for each col-

umn downward by comparing the first component.
Each processor Pi,j , sends the results A′[(i+1) n√

p−
1, j n√

p+h] (0 ≤ h ≤ n√
p−1) to the processor Pi+1,j

if exists. The received results are coordinates of
candidate pixels in CandidateN

i,j −CandidateN
i−1,j .

Step 2: (Computation of base pixels)
(1) For each pixel (x, y), set B[x, y] = (x, y) if a pixel

(x, y) is black, otherwise set B[x, y] = (+∞,+∞).
(2) Compute the prefix minima B′ of B for each col-

umn upward by comparing the first component.
The results B′[i n√

p , j n√
p + h] (0 ≤ h ≤ n√

p − 1) are
coordinates of the base pixels in BaseN

i,j .
Step 3:
case 1: (There exist at least two black pixel in Ii,j)
(1) Send coordinates of each candidate pixels in

CandidateN
i,j−1 − CandidateN

i,j−3 on processors
Pi,j−2 and Pi,j−1 to processor Pi,j .

(2) Compute nearest neighbors between base pix-
els in BaseN

i,j and gathered candidate pixels in
CandidateN

i,j − CandidateN
i,j−3 on processor Pi,j

case 2: (There exist only one black pixel in Ii,j)

ISHIMIZU et al.: PARALLEL ALGORITHMS FOR THE ALL NEAREST NEIGHBORS OF BINARY IMAGE ON THE BSP MODEL
157

(1) For each processor Pi,j , send coordinates of
base pixel b(i, j) ∈ BaseN

i,j among processors
Pi,k−1, Pi,k, . . . , Pi,j , where Ii,k is the right most
sub-image which contains at least one black pixel
among {Ii,0, Ii,1, . . . , Ii,j−1}. This can be done as
follows.

(1-1) For each processor Pi,j , set A[i, j] = (j, b(i, j))
if there is exactly one pixel in Ii,j , set A[i, j] =
(j, ∅) if there are at least two black pixel in Ii,j ,
set A[i, j] = (+∞, ∅) otherwise.

(1-2) Compute prefix minima of A[i, k] (0 ≤ k ≤√
p−1) for each processor row from right to left by

comparing the first component. We assume that
the results for Pi,j are stored in A′[i, j].

(1-3) For each processor Pi,j , if there are no black pixel
in Ii,j and there is a black pixel in Ii,j−1, then send
A′[i, j] to processor Pi,j−2 and Pi,j−1.

(2) For each processor Pi,j , find the nearest neighbors
nnb1(i, j) and nnb2(i, j) for base pixels b1(i, j) and
b2(i, j) among candidate pixels on each processor,
where b1(i, j) is a black pixel stored in A′[i, j], and
b2(i, j) is a black pixel received at (1-3), if b1(i, j)
or b2(i, j) exists.

(3) Using processors Pi,k−1, Pi,k, . . . , Pi,j , compute the
nearest neighbor to the a pixel for Pi,j among ob-
tained nearest neighbors, and inform processor Pi,j

of the obtained nearest neighbor where Ii,k is the
right most sub-image which contains at least one
black pixel in among {Ii,0, Ii,1, . . . , Ii,j−1}. This
can be done as follows.

(3-1) For each processor Pi,j , if Pi,j received b2(i, j) at
(1-3), then send nnb2(i, j) to a processor that sent
b2(i, j) to Pi,j

(3-2) For each processor Pi,j , if Pi,j received nearest
neighbors nnb2(i, j − 2) and nnb2(i, j − 1) at (3-
1), then substitute nnb1(i, j) for the nearest one
among nnb2(i, j − 2), nnb2(i, j − 1) and nnb1(i, j).

(3-3) For each processor Pi,j , set B[i, j] =
(−j′, dLq(b1(i, j), nnb1(i, j)), nnb1(i, j)), where j′ is
the first component of A′[i, j]

(3-4) Compute the prefix minima B′[i, k] of B[i, k] (0 ≤
k ≤ √

p−1) for each row processor from left to right
by comparing the first and second component by
lexicographic order. Then, the nearest neighbor for
base pixel b(i, j) is the third component of B′[i, j].

In the above algorithm, each processor requires
O(n2

p) computations and O(n√
p) data communications

in addition to prefix operations.
Thus the following lemma is obtained.

Lemma 8: The nearest neighbors in CandidateN
i,j for

pixels in BaseN
i,j can be found in O(n2

p +T comp
prefix(n, n, p))

computation time and O(g n√
p + T comm

prefix(n, n, p)) com-
munication time.

From Lemma 8, the following theorem and corol-
lary are obtained.

Theorem 2: The Lq distance all nearest neighbors
of an n × n binary image can be computed in O(n2

p

+ T comp
prefix(n, n, p)) computation time and in O(g n√

p

+ T comm
prefix (n, n, p)) communication time using p (1 ≤

p ≤ n2) processors on the BSP model.

Corollary 2: The Lq distance all nearest neighbors of
an n × n binary image can be computed in O(n2

p + L)
computation time and in O(g n√

p + L) communication

time using p (1 ≤ p ≤ n) processors and in O(n2

p +(d+

L) log p
n

log(d+1)) computation time and in O(g n√
p + (gd +

L) log p
n

log(d+1)) communication time using p (n < p ≤ n2)
processors for any integer d (1 ≤ d ≤ p

n) on the BSP
model.

5. Conclusion

In this paper, we have presented two parallel algo-
rithms, for all nearest neighbors of an n×n binary im-
age, one is for the weighted distance nearest neighbors
and the other is for the Lp distance nearest neighbors,
on the BSP model. Using an efficient parallel prefix
algorithms which we also showed in this paper, the al-
gorithms run in O(n2

p + L) computation time and in
O(g n√

p + L) communication time using p (1 ≤ p ≤ n)

processors and in O(n2

p +(d+L) log p
n

log(d+1)) computation

time and in O(g n√
p + (gd+L) log p

n

log(d+1)) communication
time using p (n < p ≤ n2) processors for any integer
d (1 ≤ d ≤ p

n) on the BSP model.

References

[1] A. Fujiwara, M. Inoue, T. Masuzawa, and H. Fujiwara, “A
parallel algorithm for weighted distance transform,” Proc.
11th International Parallel Processing Symposium, pp.407–
412, April 1997.

[2] T. Hirata, “A unified linear-time algorithm for computing
distance maps,” Inf. Process. Lett., vol.58, pp.129–133, 1996.

[3] B.H.H. Juurlink and H.A.G. Wijshoff, “Communication
primitives for BSP computes,” Inf. Process. Lett., vol.58,
pp.303–310, 1996.

[4] D.W. Paglieroni, “Distance transforms: Properties and ma-
chine vision applications,” CVGIP: Graphical Models and
Image Processing, vol.54, pp.56–74, 1992.

[5] F.P. Preparata and M.I. Shamos, Computational Geometry:
An Introduction, Springer-Verlag, New York, 1985.

[6] L.G. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol.33, no.8, pp.103–111, Aug. 1990.

158
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.2 FEBRUARY 2000

Takashi Ishimizu received the M.E.
degree in Nara Institute of Science and
Technology (NAIST) in 1997. He is now
a student of Graduate School of Informa-
tion Science, Nara Institute of Science and
Technology (NAIST). His main research
interests are parallel algorithms and par-
allel complexity theory.

Akihiro Fujiwara received the B.E.
degree in Osaka University in 1993, and
received the M.E. and Ph.D. degrees in
Nara Institute of Science and Technology
(NAIST) in 1995 and 1997, respectively.
He is now a lecturer of Kyushu Institute
of Technology. His main research interests
are parallel algorithms, parallel complex-
ity theory and cluster processing. He is a
member of IEEE and IPSJ.

Michiko Inoue received her B.E.,
M.E, and Ph.D degrees from Osaka uni-
versity in 1987, 1989, and 1995 respec-
tively. She is an instructor of Graduate
School of Information Science, Nara insti-
tute of Science and Technology (NAIST).
Her research interests include distributed
algorithms, parallel algorithms, graph
theory and design and test of digital sys-
tems. She is a member of IEEE, the Infor-
mation Processing Society of Japan, and

Japanese Society for Artificial Intelligence.

Toshimitsu Masuzawa received the
B.E., M.E. and D.E. degrees in computer
science from Osaka University in 1982,
1984 and 1987. He had worked at Ed-
ucation Center for Information Process-
ing, Osaka University between 1987–1990,
and had worked at Faculty of Engineering
Science, Osaka University between 1990–
1994. He is now an associate professor of
Graduate School of Information Science,
Nara Institute of Science and Technology

(NAIST). He was also a visiting associate professor of Depart-
ment of Computer Science, Cornell University between 1993–
1994. His research interests include distributed algorithms, paral-
lel algorithms and graph theory. He is a member of ACM, IEEE,
EATCS and the Information Processing Society of Japan.

Hideo Fujiwara received the B.E.,
M.E., and Ph.D. degrees in electronic en-
gineering from Osaka University, Osaka,
Japan, in 1969, 1971, and 1974, respec-
tively. He was with Osaka University from
1974 to 1985 and Meiji University from
1985 to 1993, and joined Nara Institute of
Science and Technology in 1993. In 1981
he was a Visiting Research Assistant Pro-
fessor at the University of Waterloo, and
in 1984 he was a Visiting Associate Pro-

fessor at McGill University, Canada. Presently he is a Professor
at the Graduate School of Information Science, Nara Institute of
Science and Technology, Nara, Japan. His research interests are
logic design, digital systems design and test, VLSI CAD and fault
tolerant computing, including high-level/logic synthesis for testa-
bility, test synthesis, design for testability, built-in self-test, test
pattern generation, parallel processing, and computational com-
plexity. He is the author of Logic Testing and Design for Testa-
bility (MIT Press, 1985). He received the IECE Young Engineer
Award in 1977, IEEE Computer Society Certificate of Appreci-
ation Award in 1991, Okawa Prize for Publication in 1994, and
IEEE Computer Society Meritorious Service Award in 1996. He
is an advisory member of IEICE Trans. on Information and Sys-
tems and an editor of IEEE Trans. on Computers, J. Electronic
Testing, J. Circuits, Systems and Computers, J. VLSI Design and
others. Dr. Fujiwara is a fellow of the IEEE and a Golden Core
member of the IEEE Computer Society as well as a member of
the Information Processing Society of Japan.

