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Wait-Free Linearizable Distributed Shared Memory
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SUMMARY We consider a wait-free linearizable implemen-
tation of shared objects on a distributed message-passing sys-
tem. We assume that the system provides each process with
a local clock that runs at the same speed as global time and
that all message delays are in the range [d − u, d] where d and u
(0 < u ≤ d) are constants known to every process. We present
four wait-free linearizable implementations of read/write registers
on reliable and unreliable broadcast models. We also present two
wait-free linearizable implementations of general objects on a re-
liable broadcast model. The efficiency of an implementation is
measured by the worst-case response time for each operation of
the implemented object. Response times of our wait-free imple-
mentations of read/write registers on a reliable broadcast model
is better than a previously known implementation in which wait-
freedom is not taken into account.
key words: synchronous message-passing system, distributed
shared memory, linearizability, wait-freedom

1. Introduction

How to provide logically shared objects in a distributed
system is a fundamental problem on concurrent com-
puting. A distributed system has good scalability while
it needs low-level or complex control to shared data
through message-passing paradigm. Logically shared
objects greatly simplifies a design of a user program
owing to its simple and general computing paradigm.
A distributed shared memory consisting of such shared
objects aims at providing useful and scalable program-
ming environment for high-performance computing us-
ing multiple processors.

We implement logical shared objects which are
used by multiple application processes concurrently.
The implemented shared objects should provide some
consistency for concurrent accesses. We consider lin-
earizable implementations [1] of shared objects on a dis-
tributed message passing system. Informally, lineariz-
ability guarantees that operations to the implemented
objects seem to be executed sequentially in some total
order, and, for two operations such that one operation
starts after the other operation completed, this total
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order preserves the real-time order on them. It has
some good properties, such as locality and nonblock-
ing. Locality means that a system is linearizable if
each individual object is linearizable. Locality allows
a concurrent system to be designed and constructed
in a modular fashion; each of linearizable objects can
be implemented, verified and executed independently.
Nonblocking property means that a pending operation
is never required to wait for another pending operation
to complete. Nonblocking implies that linearizability is
an appropriate condition for a system where real-time
response is important.

An implementation of objects is said to be wait-
free if any operations of the implemented objects are
completed in finite time regardless of other processes’
behavior [2]. We consider a wait-free linearizable im-
plementation, which tolerates crash faults of any num-
ber of processes. James et al. showed that there are
no wait-free linearizable implementations of read/write
registers on a fully asynchronous system [3]. In this
paper, we assume that all message delays in the sys-
tem are in the range [d−u, d] for some constants d and
u(0 < u ≤ d), and these constants are known to every
process. We also assume that the system provides each
process with a local clock that runs at the same speed
as global time. We consider two kinds of models on
message exchange, a reliable broadcast and an unreli-
able broadcast. These two models differ in a guarantee
on a case where a process crashes during its broad-
cast. A reliable broadcast model guarantees that every
correct process receives a broadcasted message. In an
unreliable broadcast model, if a process crashes during
its broadcast, the message is not guaranteed to be sent
to all correct processes. In such a case, some correct
processes receive the message while the other correct
processes may not receive it. We consider two kinds
of models also on local clocks, asynchronous clocks and
u-synchronous clocks. In a u-synchronous clock model,
the difference between any pair of two local clock values
is at most u. In an asynchronous clock model, we make
no assumptions on such a difference. The efficiency of
an implementation is measured by the worst-case re-
sponse time res time(op) for each operation op of the
implemented objects.

Several authors have investigated linearizable im-
plementations of shared objects on a system in which no
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Table 1 Previous known results on linearizable implementa-
tions.

read/write registers
res time res time

bound clocks (write) (read)

upper u-synchronous [4] 4u + αm 4u+
(1 − α)m∗

(0 < α ≤ 1, m = d − u)
lower asynchronous [5] u/2

[4] The sum is d + u/2.
u/2

FIFO queues
res time res time

(dequeue) (enqueue)

lower asynchronous [6] d + u/2 u(n − 1)/n
if u ≤ (2/3)d

general objects

res time res time
(opa) (opv)

upper asynchronous [6] u 2d
all message delays in [d − u, d]

n : the number of processes

　∗The bibliography [4] shows that the implementation achieves
res time(write) = 4u+α(d−u) and res time(read) = 4u+(1−
α)(d − u) + b where b is an arbitrarily small constant implying
the length of an interval for a broadcast. We ignore the length
here and regard the small constant b as zero.

Table 2 Wait-free linearizable implementations in this paper.

read/write registers
res time res time

broadcast clocks (write) (read)

reliable asynchronous d u
u-synchronous u + αm′ u + (1 − α)m′

(0 ≤ α ≤ 1,
m′ = max{d − 2u, 0})

unreliable asynchronous d d
u-synchronous u d

general objects
res time res time

(opa) (opv)

reliable asynchronous u 2d
u-synchronous u d + u

all message delays in [d − u, d]

processes crash and all message delays are in the range
[d−u, d]. Previous results are shown in Table 1. Attiya
et al.[5] and Mavronicolas et al.[4] showed lower bound
results about any implementations of read/write regis-
ters on an asynchronous clock model. Mavronicolas et
al. also presented an implementation of read/write reg-
isters on a u-synchronous clock model [4]. Inoue et al.
presented an implementation of general objects such
that res time(opa) = u and res time(opv) = 2d on
an asynchronous clock model, where opa is any opera-
tion returning a unique response, called to be ack-type,
and opv is any operation that is not ack-type, called
to be val-type[6]. They also showed lower bound re-
sults about any implementations of FIFO queues on an
asynchronous clock model [6].

In this paper, we propose wait-free linearizable im-
plementations. First, we present four wait-free lineariz-

able implementations of read/write registers. Two of
them are implementations using reliable broadcasts on
an asynchronous and u-synchronous clock models. The
other two are implementations on an unreliable broad-
cast model, on an asynchronous and u-synchronous
clock models. Furthermore, we present two wait-free
linearizable implementations of general objects on an
asynchronous and u-synchronous clock models using re-
liable broadcasts. The implementation of general ob-
jects on an asynchronous clock model is based on an
implementation in [6], which is not wait-free. We show
our results in Table 2. All of them are wait-free, that is,
they tolerate crash faults of any number of processes.
Moreover, the response time of our implementation on
a u-synchronous clock model using reliable broadcasts
is more efficient than previous known implementation
on a u-synchronous clock model in [4].

2. Definitions

2.1 System

A distributed message-passing system consists of multi-
ple processes and a communication network. A process
communicates with any other processes by exchang-
ing messages through the network. No messages are
omitted in exchange of messages. All message delays
are in the range [d − u, d] for some constants d and u
(0 < u ≤ d) where every process knows these d and u.
Each process has a local clock that runs at the same rate
as global time†. The process obtains local time from its
local clock. The process has a timer based on its local
clock, and it can set an alarm by the timer. We assume
the difference between any pair of local clock values in
a system is at most ε for some constant ε. Such a model
is called ε-synchronous clock model. If ε is the infinity,
the model is called asynchronous clock model.

We assume that a process may crash. After a pro-
cess crashes, it ceases to operate. We consider two
kinds of models about exchange of messages, a reliable
broadcast model and an unreliable broadcast model . In
both models, processes communicate with each other by
sending and receiving messages. A reliable broadcast
means that every broadcasted message is guaranteed to
be received by all correct processes. Therefore, in a re-
liable broadcast model, a broadcast is modeled as one
event where the process sends a message to all processes
atomically. On the other hand, a broadcast is imple-
mented by sending a message sequentially to all pro-
cesses in an unreliable broadcast model. In this model,
if a process gets faulty during its broadcast, some cor-
rect processes receives a message while the other correct
processes do not receive it.

A process p is modeled as a state machine. Its
†We use system-wide global time to specify system be-

havior. Note that the global time is introduced only for
specification and no processes can use it.
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state changes when some event occurs at p. A system
configuration (or we call just configuration) is defined
as all process states, a set N of in-transit messages and
sets Ap of alarms which have been set and have not
gone off at each process p. An in-transit message is a
triple (M, s, r) where M is a message, s is the sender,
and r is the destination. An alarm is a pair (K, t) where
K is the type of an alarm and t is the local time for the
alarm to go off. Each process has the following events.

• Communication events: events in which a process
sends or receives a message. In a reliable broad-
cast model, broadcast events BroadCast(p,M)
and receive events Receive(p, q,M) can occur.
In an unreliable broadcast model, send events
Send(p, q,M) and receive events Receive(p, q,M)
can occur.

Send(p, q,M) : Process p sends a message M to
process q. A triple (M, p, q) is added to N .

BroadCast(p,M) : Process p broadcasts a mes-
sage M , that is, it sends M to all processes†.
For each process q, (M, p, q) is added to N .

Receive(p, q,M) : Process p receives a message M
from process q. A triple (M, q, p) is removed
from N .

• Time events: events about the local clock.

T imerSet(p, t̄,K) : Process p sets its timer of
type K to go off after t̄. When an event
T imerSet(p, t̄,K) occurs at local time t, a
pair (K, t+ t̄) is added to Ap.

Alarm(p,K) : An alarm of type K occurs at pro-
cess p. When an event Alarm(p,K) occurs
at local time t, a pair (K, t) is removed from
Ap.

ReadClock(p, s) : Process p obtains the clock
value s from its local clock.

• Stop(p) : Process p crashes. In this event, p’s state
changes to fault state and p ceases to operate.

• A process communicates also with the outside of
the system, which we call environment . We de-
scribe events about communication between a pro-
cess and the environment later.

The receive, alarm and stop events are input events,
which arise out of the process’s control.

The system history (or we call just history) is
defined as a finite or infinite alternating sequence
of configurations and occurrences of events, H =
c0, (e1, t1), c1, · · · , ck, (ek+1, tk+1), ck+1, · · · , where each
ck(k ≥ 0) is a configuration, (ek, tk)(k ≥ 1) is an occur-
rence of an event, ek is an event and tk is global time
when ek occurs. Each tk is denoted by time(ek). A
process p’s state of a configuration ck is a projection
of ck to p, denoted by ck|p. The first configuration c0
is called an initial configuration, in which all processes
are in the initial state, and N and Ap for any process

p are empty. For each k, tk ≤ tk+1 holds. A history H
implies that, for each k(k ≥ 0), an event ek+1 occurs
at some process p at tk+1 in a configuration ck, and p’s
state changes from ck|p to ck+1|p (and N or Ap also
may change). To be simplified, all events in a history
are distinct. We assume the following conditions on any
history H .

• If Ap contains a pair (K, t), Alarm(p,K) occurs
or p is in a fault state at local time t. Conversely,
Alarm(p,K) occurs at t, only if (K, t) is in Ap.

• If a triple (M, p, q) is added to N at T ,
Receive(q, p,M) occurs in [T + d − u, T + d] or
q is a fault state at T + d. Only if N contains
a triple (M, p, q), a receive event Receive(q, p,M)
occurs.

2.2 Implementation of an Object

We define a deterministic shared object (we call just ob-
ject in the following). An object is a data structure to
which multiple processes can access concurrently. An
object has a unique name and a type. The type is a
tuple (OP,RES,Q, q0, δ), where OP is a set of opera-
tions, RES is a set of responses, Q is a set of states,
q0 is an initial state, and δ : Q × OP → Q × RES
is a function called sequential specification. The se-
quential specification defines a behavior of the object
when operations are applied sequentially: if an oper-
ation op is applied to the object in a state s, the ob-
ject changes its state to s′ and returns the response res
where δ(s, op) = (s′, res) holds. Such an object is called
to be deterministic, since the sequential specification is
a function. If an operation op always returns a unique
response, that is |{res|∃s, s′[δ(s, op) = (s′, res)]}| = 1,
op is called to be ack-type. An operation is called to
be val-type, if it is not ack-type. In the following, opa
denotes any ack-type operation and opv denotes any
val-type operation.

Next, we define an implementation of an object
O of type (OP,RES,Q, q0, δ). We implement a
virtual shared object which is used concurrently by
environment. Figure 1 illustrates the implementa-
tion. An object is implemented by a set of processes
{p1, p2, · · · , pn}. A subscript i of each pi is the pro-
cess identifier. Environment can access an object by
communicating with a process pi. Communication be-
tween environment and a process pi is modeled as the
following events.

• Invoke(pi, op) : Environment calls pi to apply an
operation op(∈ OP ) to the object O.

• Response(pi, res) : Process pi returns a response
res(∈ RES) for an invocation to environment.

The invoke event is an input event. We assume the
†For convenience, we assume that a process sends a mes-

sage to all processes including itself by a broadcast.
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Fig. 1 Implementation of a shared object.

following condition about communication between en-
vironment and pi on any history H .

• Once environment invokes an operation to a pro-
cess pi, it does not invoke the next operation to pi
until pi returns a response for the former invoca-
tion.

To return consistent responses, the processes exchange
messages with each other.

For each pi, we consider a sequence obtained by re-
stricting a history to pi’s invoke and response events. In
an implementation, a process returns a response if and
only if an operation is invoked to the process. There-
fore, the obtained sequence should be an alternating
sequence Inv1, Res1, Inv2, Res2, · · · where Invk is an
invoke event and Resk is a response event for each
k(k ≥ 1). For each invoke event Invk, the next event
Resk is called to be a corresponding response event. A
pair of events (Invk, Resk) is called an operation ex-
ecution. An invoke event that has no corresponding
response events is said to be pending. If an invoke
event of an operation is not pending, it is said to be
completed .

The implemented object should provide some con-
sistency for concurrent accesses. We adopt lineariz-
ability as a consistency condition of an implementation
of an object. Herlihy et al. showed a local property
of linearizability [1]. The locality means that an im-
plementation of multiple shared objects is linearizable
if and only if each object is implemented linearizably.
This says that objects can be implemented and verified
independently. In this paper, we consider an implemen-
tation of one object, and we define an implementation
of only one object. From locality, we can implement
multiple objects from our implementations of one ob-
ject.

Now we define linearizability and wait-freedom.
We consider a sequence of operation executions
τ = (Inv1, Res1), (Inv2, Res2), · · ·. For each k(k ≥
1), let Invk and Resk be Invoke(pik , opk) and
Response(pik , resk) respectively. For an object O of
type (OP,RES,Q, q0, δ), if there exists a sequence θ =
q0, q1, · · · of states of O, where δ(qk−1, opk) = (qk, resk)
holds for each k ≥ 1, τ is said to be legal . In a
system history H , if time(Resk) < time(Invl) holds
for two operation executions opk = (Invk, Resk) and

opl = (Invl, Resl), we say that opk precedes opl and
opl succeeds opk, denoted by opk

H→ opl. A sequence
obtained by restricting a history H to completed invoke
and response events is denoted by complete(H).

Definition 1: A history H is said to be linearizable,
if there exists a history H ′ that satisfies the followings.

• The history H ′ is obtained from H by adding
corresponding response events for some (possibly
empty) pending invoke events.

• There exists a legal sequence τ consisting of all
operation executions in complete(H ′) such that,
for any operation executions op1 and op2 satisfying

op1
complete(H′)−→ op2, op1 precedes op2 in τ . ✷

Definition 2: For an implementation I, if any possi-
ble system history H is linearizable, the implementa-
tion I is said to be linearizable. ✷

Definition 3: A history H is said to be wait-free, if
any invoke event Inv in a history H satisfies one of the
followings.

• There exists a corresponding response event.
• For the process pi in which Inv occurs, Stop(pi)

occurs after Inv. ✷

Definition 4: For an implementation I, if any possi-
ble system history H is wait-free, the implementation
I is said to be wait-free. ✷

The efficiency of an implementation I is measured
by the worst-case response times of operation execu-
tions. For an operation execution (Inv,Res), we de-
fine the response time as time(Res) − time(Inv). Let
OPE(H) denote a set of operation executions that
appear in a history H . For an operation execution
ope = (Inv,Res), let ope.op denote an operation in-
voked in Inv. For an implementation I of an object
O of type (OP,RES,Q, q0, δ), we define the worst-
case response time of op, denoted by res time(op),
as max{res time(ope)|ope ∈ OPE(H), ope.op =
op,H is a history of I}.

3. Read/Write Registers

In this section, we present four implementations
of a read/write register. We show the type of
a read/write register on a domain D in Fig. 2.
The efficiency of a read/write register is mea-
sured by res time(read) and res time(write) where
res time(write) = max{res time(write(v))}. Two im-
plementations described in the first subsection use reli-
able broadcasts, and two implementations described in
the second subsection does not use reliable broadcasts.

In all implementations, each process keeps a local
copy of a read/write register. When a write operation
is invoked at a process, the process assigns a timestamp
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type of read/write register (OP, RES, Q, q0, δ)
OP = {write(v)|v ∈ D} ∪ {read}
RES = {ack} ∪ D
Q = D
∀v, v′ δ(v, write(v′)) = (v′, ack)
∀v δ(v, read) = (v, v)

Fig. 2 Type of a read/write register on a domain D.

to the write operation and broadcasts an update mes-
sage that contains the written value and the timestamp
of the write operation. A process updates its local copy
according to received update messages. The update de-
pends on a timestamp assigned to the write operation.
In a read operation, the value of its local copy at some
time during the operation is returned.

We describe each program code by event-driven
form for input events. A series of each event and the
succeeding internal changes of the state is atomic, that
is, the process does not crash during the series. If mul-
tiple input events occur at the same time, they are han-
dled in an order such that they appear in the described
code except a stop event.

3.1 Implementations Using Reliable Broadcasts

In this subsection, we show two implementations using
reliable broadcasts. The first one is an implementation
on an asynchronous clock model and the other is on a
u-synchronous clock model.

3.1.1 Asynchronous Clocks

The first implementation, which we call registerRB−AC

(for “reliable broadcast, asynchronous clocks”), pro-
vides a read operation with response time u and a write
operation with response time d. The program code for
pi is given in Fig. 3.

First we assume that no faults occur and later con-
sider the case where any number of processes crash. In a
write operation, the process broadcasts an update mes-
sage first. When a process receives the update message,
it updates its local copy according to the message. The
write operation is completed by returning ack after d
since its invocation. In a read operation, the value of
its local copy at invoked time is returned. After u since
its invocation, the process returns the value.

In this implementation, a process uses an integer
count as a timestamp. The integer count increases by
one when a write operation is invoked at the process.
If the timestamp contained in a received update mes-
sage is greater than the process’s count, the process
sets its count to the timestamp. Since any message de-
lay is not greater than d, a write operation execution
W2 succeeding another one W1 is assigned a greater
timestamp than W1’s timestamp.

A process sets its local copy to the written value
contained in each update message in order of its times-

data type
timestamp=(integer, process identifier);

variables
count, type integer, init 0;
res val, type value of the register ;
last up ts, type timestamp, init (0, 0);
local copy, type value of the register, init initial value of

the register;

transition functions of process pi

Invoke(pi, write(v)) :
count := count + 1;
BroadCast(pi, update(v, (count, i))); /* update message */
TimerSet(pi, d,WRITE);

Invoke(pi, read) :
res val := local copy;
TimerSet(pi, u,READ);

Receive(pi, pj , update(v, (recvd count, recvd uid))) :
count := max(count, recvd count);

if last up ts <† (recvd count, recvd uid)
then local copy := v; last up ts := (recvd count, recvd uid);

Alarm(pi,WRITE) :
Response(pi, ack);

Alarm(pi,READ) :
Response(pi, res val);

Stop(pi) :
No events can happen after this event.

　†A relation (a1, b1) < (a2, b2) means that a1 < a2, or a1 = a2

and b1 < b2.

Fig. 3 Implementation registerRB−AC . (The code for pi.)

tamp (breaking tie by process identifiers). However,
there is a case where a process receives an update mes-
sage after it updates its local copy according to some
update message with a greater timestamp. In this case,
the process considers that such an update message has
already been handled and the value is overwritten by
the write operation with a greater timestamp. Thus
the process ignores such an update message. An update
message broadcasted at time t of a write operationW is
received in [t+ d−u, t+ d]. Therefore, at each process,
the update message for W is handled in this interval,
or it is ignored. For two read operations executions R
and R′ such that R′ precedes R, it is guaranteed that
R returns the value written by the write operation with
timestamp greater than or equal to R′.

Next, we consider the case where any number of
processes crash. If a process crashes during an opera-
tion, the operation is left pending. In implementation
registerRB−AC , only a write operation influences the
other processes. In a reliable broadcast model, if and
only if some process broadcasts an update message in a
write operation execution, all correct processes receive
the update message. This does not depend on whether
the write operation is completed. Therefore, implemen-
tation registerRB−AC works correctly in a case where
some processes crash.

Now we prove that registerRB−AC is a wait-free
linearizable implementation of a read/write register.
We show that any possible history H in registerRB−AC
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is linearizable and wait-free. A pending invoke event of
a write operation W is said to be valid if some response
event of a read operation execution returns the value
written by W . Let H ′ be a history in which a response
event corresponding to each valid pending event e in H
is added at time(e) + d.

Lemma 1: Let Inv be an invoke event of any write
operation execution W in a history complete(H ′). Let
M be the update message of W . If a process pi updates
its local copy according toM , it is done in [time(Inv)+
d− u, time(Inv) + d]. ✷

For a write operation execution W , let ts(W ) de-
note a pair ofW ’s timestamp and the process identifier.

Lemma 2: For write operation executions W1 and

W2 in complete(H ′), if W1
complete(H′)−→ W2, then

ts(W1) < ts(W2) holds. ✷

For a read operation R, let Write(R) be the write
operation execution whose written value R returns.

Lemma 3: Let R1 and R2 be read operation exe-

cutions in complete(H ′) satisfying R1
complete(H′)−→ R2.

Then, ts(Write(R1)) < ts(Write(R2)) or Write(R1) =
Write(R2) holds. ✷

Theorem 4: The implementation registerRB−AC is
a wait-free linearizable implementation of a read/write
register which achieves res time(write) = d and
res time (read) = u on an asynchronous clock model
using reliable broadcasts.

Proof. It is trivial that the implementation
is wait-free and achieves res time(write) = d and
res time(read) = u. We show the implementation is
linearizable in the rest of the proof.

We construct a legal sequence τ that consists of all
operation executions in complete(H ′), and show that,
for any operation executions op1 and op2, op1 precedes

op2 in τ if op1
complete(H′)−→ op2. First, we assume that

a sequence τ begins with a virtual write operation W0

that writes the initial value, and arrange all write op-
eration executions in complete(H ′) after W0 in order
of their timestamps. Next, we put each read opera-
tion R between write operation executions in order of
its invocation time by the following way to accomplish
constructing a sequence τ . Let Wk be Write(R) and
Wk+1 be the write operation execution that we have
arranged next to Wk. We put R immediately before
Wk+1.

Now we show that for any operation executions op1
and op2, if op1

complete(H′)−→ op2, op1 precedes op2 in τ .

(i) op1 and op2 are write operation executions W1 and

W2: From Lemma 2, if W1
complete(H′)−→ W2, then

ts(W1) < ts(W2) holds. From the rule to construct
τ , W1 precedes W2 in τ .

(ii) op1 and op2 are read operation executions R1 and
R2: Let W1 and W2 beWrite(R1) and Write(R2)
respectively. From Lemma 3, ts(W1) < ts(W2) or
W1 = W2 holds. From the rule to construct τ , R1

precedes R2 in τ in both cases.
(iii) op1 is a write operation execution W1 and op2

is a read operation execution R1: Let W1 be
(InvW1 , ResW1) and R1 be (InvR1 , ResR1). Let

R1 be an operation at pi. From W1
complete(H′)−→ R1,

time(InvW1) + d = time(ResW1) < time(InvR1)
holds. The process pi receives the update mes-
sage for W1 at time(InvW1) + d or before, and
then returns the response for R1 at time(ResR1) =
time(InvR1) + u. From the implementation, pi’s
count at time(ResW1) is greater than or equal
to ts(W1) and it does not decrease. Therefore,
Write(R1)’s timestamp is greater than or equal
to ts(W1). This implies that R1 succeeds W1 in τ .

(iv) op1 is a read operation execution R1 and op2
is a write operation execution W1: Let W1 be
(InvW1 , ResW1) and R1 be (InvR1 , ResR1). Let
W2 = Write(R1) be (InvW2 , ResW2). From
Lemma 1, W2 is invoked before time(InvR1) +
u − d. From time(InvW1) > time(InvR1) +
u, time(InvW1) > time(ResW2) holds. Since

W2
complete(H′)−→ W1 holds, R1 is put between W2

and W1 in τ .

Finally, from the rule to construct τ , all read op-
erations return the value written by the latest write
operation. Therefore, τ is legal. ✷

3.1.2 u-Synchronous Clocks

The next implementation, which we call registerRB−uC

(for “reliable broadcast, u-synchronous clocks”), pro-
vides a read operation with response time u + (1 −
α) max{d− 2u, 0} and a write operation with response
time u + α · max{d − 2u, 0} where α(0 ≤ α ≤ 1) is a
parameter. The program code for pi is given in Fig. 4.

Implementation registerRB−uC is based on im-
plementation registerRB−AC . The difference between
registerRB−uC and registerRB−AC is that we use a
local clock value as a timestamp in registerRB−uC in-
stead of count in registerRB−AC . In u-synchronous
clock model, the difference between any pair of local
clock values is at most u. Therefore, it is guaranteed
that a preceeding write operation has a smaller times-
tamp if response time of a write operation is u or more.
For a write operation execution W = (InvW , ResW ),
any process pi updates its local copy according to W ’s
update message in [time(InvW )+d−u, time(InvW )+d]
or ignores the update message. Now let R be a read op-
eration execution and W be Write(R). For any read
operation execution R′ preceeding R, it is guaranteed
that W has a greater timestamp than Write(R′) if re-
sponse time of read operation is u or more. Further-
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constant
|W | = u + α · max{d − 2u, 0}, |R| = u + (1 − α)max{d − 2u, 0}

transition functions of process pi

Invoke(pi, write(v)) :
ReadClock(pi, local cl);
BroadCast(pi, update(v, (local cl, i))); /* update message */
TimerSet(pi, |W |,WRITE);

Invoke(pi, read) :
TimerSet(pi,min{|R|, d − u}, SET VAL);
TimerSet(pi, |R|,READ);

Receive(pi, pj , update(v, (recvd cl, recvd uid))) :
if last up ts < (recvd cl, recvd uid)

then local copy := v; last up ts := (recvd cl, recvd uid);

Alarm(pi,WRITE) :
Response(pi, ack);

Alarm(pi, SET VAL) :
res val := local copy;

Alarm(pi,READ) :
Response(pi, res val);

Stop(pi) :
No events can happen after this event.

Fig. 4 Implementation registerRB−uC . (The code for pi.)

more, the time when res val is stored in a read op-
eration guarantees that any write operation execution
preceeding R except W has a smaller timestamp than
W . For any write operation execution W ′ preceeding
R, it is guaranteed that W has a greater timestamp
than W ′ if the sum of response time of read and write
operations is d or more.

Lemmas 1–3 also hold in registerRB−uC . From
these lemmas, we can construct a legal sequence τ for
any possible history H like Theorem 4. Therefore,
registerRB−uC is a wait-free linearizable implementa-
tion of a read/write register.

Theorem 5: The implementation registerRB−uC is
a wait-free linearizable implementation of a read/write
register which achieves res time(write) = u + α ·
max{d − 2u, 0} and res time (read) = u + (1 −
α) max{d − 2u, 0} (0 ≤ α ≤ 1) on a u-synchronous
clock model using reliable broadcasts. ✷

3.2 Implementations on Unreliable Broadcast Model

In this subsection, we show two implementations on
an unreliable broadcast model. The first one is on
asynchronous clock model, and the other is on u-
synchronous clock model. A message broadcasted in
this model is not guaranteed to be received by all cor-
rect processes if the sender crashes during its broad-
casting. A message which all correct processes do not
receive is called to be incompletely broadcasted.

3.2.1 Asynchronous Clocks

The first implementation, which we call registerUB−AC

transition functions of process pi

Invoke(pi,Write(v)) :
count := count + 1;
for j = 1 to n /* broadcasting an original update message */

do Send(pi, pj , update(v, (count, i)));
TimerSet(pi, d,WRITE);

Invoke(pi,Read) :
res val := local copy;
for j = 1 to n /* broadcasting an additional update message */

do Send(pi, pj , update(res val, last up ts));
TimerSet(pi, d,READ);

Receive(pi, update(v, (recvd count, recvd uid))) :
count := max(count, recvd count);
if last up ts < (recvd count, recvd uid)

then local copy := v; last up ts := (recvd count, recvd uid);

Alarm(pi,WRITE) :
Response(pi, ack);

Alarm(pi,READ) :
Response(pi, res val);

Stop(pi) :
No events can happen after this event.

Fig. 5 Implementation registerUB−AC . (The code for pi.)

(for “unreliable broadcast, asynchronous clocks”) pro-
vides a read operation with response time d and a write
operations with response time d. The program code for
pi is given in Fig. 5.

First, we consider to apply registerRB−AC to an
unreliable broadcast and asynchronous clock model.
An incompletely broadcasted update message M does
not cause update of a local copy to all correct processes.
This violates linearlizability as follows. A correct pro-
cess that receives M returns a value v contained in M
for a read operation execution R after receiving M . On
the other hand, a correct process that does not receive
M cannot return v for a read operation execution suc-
ceeding R.

In an implementation registerUB−AC , a process
where a read operation execution R occurs relays infor-
mation about the update message that contained the
returned value by sending an additional update mes-
sage to the others. Every process never fails to know
information about an update message that contains the
value returned by R. Even if a correct process does not
receive an original update message, it updates its local
copy according to the additional update message.

Here we explain how a process relays such neces-
sary information. In each read operation R, a process
assigns the timestamp (containing the process identi-
fier) of Write(R). If R returns the initial value, (0, 0)
is assigned. A process decides a returned value when
the invocation occurred, and then the process broad-
casts an additional update message which contains the
returned value and Write(R)’s timestamp. This is a
different point from registerRB−AC or registerRB−uC .
The process returns the value after d since its invoca-
tion. If some process completes a read operation, it is
guaranteed that all correct processes obtain informa-
tion about the value returned in the operation. A pro-
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cess sets its local copy to the value contained in each
original or additional update message in order of its
timestamp. When a process receives an update mes-
sage, only if the message has a greater timestamp than
the latest update, it updates its local copy according to
the message.

To prove that registerUB−AC is a wait-free lin-
earizable implementation of a read/write register, we
consider any possible history H . For the history H ,
we construct a history H ′ as follows. We consider any
pending write operation execution W whose value some
read operation returns. Let R be the first read oper-
ation that returns W ’s value, and add W ’s response
event at the same time as R’s response event in a his-
tory H ′. Let ts(op) denote a pair of the timestamp
and the process identifier assigned to an operation ex-
ecution op including a read operation execution. Note
that ts(Write(R)) = ts(R) holds for a read operation
R. Let op ts(op) be a pair of count and the process
identifier at invoked time. Note that ts(W ) = op ts(W )
holds for a write operation W . Then, the next lemma
holds.

Lemma 6: For any operation executions op1 and op2,

if op1
complete(H′)−→ op2 holds, (ts(op1), op ts(op1)) <

(ts(op2), op ts(op2)) holds. ✷

Theorem 7: The implementation registerUB−AC is
a wait-free linearizable implementation of a read/write
register which achieves res time (write) = d and
res time (read) = d on an asynchronous clock and un-
reliable broadcast model.

Proof. It is trivial that the implementation
is wait-free and achieves res time(write) = d and
res time(read) = d. We show the implementation is
linearizable in the rest of the proof.

We construct a legal sequence τ . First, we assume
that there is a virtual write operation W0 which writes
the initial value such that ts(W0) = op ts(W0) = (0, 0).
Next, we arrange each operation op in complete(H ′)
in order of (ts(op), op ts(op)) to accomplish construct-
ing a sequence τ . From Lemma 6, for any opera-
tion executions op1 and op2, op1 precedes op2 in τ if

op1
complete(H′)−→ op2. For each read operation R, there

is a write operation W such that W = Write(R) and
ts(R) = ts(W ) hold. For such R and W , op ts(W ) <
op ts(R) holds. Furthermore, for any write operation
W1 assigned a greater timestamp, ts(W1) > ts(W ) =
ts(R) holds. For any write operation W2 assigned a
smaller timestamp, ts(W2) < ts(W ) holds. Therefore,
there are no write operations between W and R, and τ
is legal. ✷

3.2.2 u-Synchronous Clocks

Here we describe a brief outline of an implementa-
tion on a u-synchronous clock and unreliable broad-

cast model, called registerUB−uC . The implemen-
tation provides a write operation with response time
u and a read operation with response time d. In
registerUB−uC , a process uses its local clock value as a
timestamp instead of count in registerUB−AC . When
a write operation is invoked, a process sends a message
containing the written value and its timestamp to all
processes. In a read operation, a process decides the re-
turned value and sends a message containing the value
and its timestamp to all processes in d − u since the
invocation. The read operation is completed by return-
ing the value. Response times of both write and read
operations in registerUB−AC is d, while response time
of a write operation in registerUB−uC can be reduced
to u. This is because, for any write operation execu-
tions W1 and W2, W2 is assigned a greater timestamp
than W1 if W2 is invoked after u since an invocation of
W1.

Theorem 8: The implementation registerUB−uC is
a wait-free linearizable implementation of a read/write
register which achieves res time (write) = u and
res time (read) = d on a u-synchronous clock and un-
reliable broadcast model. ✷

4. General Objects Using Reliable Broadcasts

In this section, we present two implementations of a
general deterministic object using reliable broadcasts.
One is on an asynchronous clock model, and the other
is on a u-synchronous clock model. In our implemen-
tations of a general object, each process keeps a local
copy of the implemented object, and applies invoked
operations to it sequentially in some common order to
all processes. Note that an implementation of a general
objects reflects every supported operation.

4.1 Asynchronous Clocks

We previously presented a linearizable implementa-
tion of a general object on an asynchronous clock
model, where we achieved res time(opa) = u and
res time(opv) = 2d[6]. Here we call that implemen-
tation generalIMT . Implementation generalIMT did
not assume any process fault, and actually some pro-
cess fault causes violation of linearizability. The im-
plementation is not wait-free in a sense that it does
not tolerate a crash fault of a process. In this subsec-
tion, we slightly modify generalIMT so as to guarantee
wait-freedom in the case where a reliable broadcast is
available. First, we explain generalIMT , and then men-
tion the modification to produce a wait-free linearizable
implementation, which we call generalRB−AC .

In implementation generalIMT , any val-type oper-
ation needs 2d since its invocation to obtain its response
value, and any operation needs u since its invocation to
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return a response that guarantees linearizability. As de-
scribed before, each process applies invoked operations
to the implemented object sequentially in some com-
mon total order to all processes. To decide the com-
mon total order, each process first decides a common
partial order PO on occurrences of invoked operations,
and then locally extends it to a total order T O by com-
mon rules to all processes. Here we just explain how to
decide PO and T O.

The partial order PO is decided as follows. Ev-
ery process uses two kinds of messages, an update mes-
sage and a report message. When an operation op1 is
invoked at a process pi, the process pi broadcasts an
update message to inform the other processes of the
invocation. Let t1 be the invoked time of op1. If pi
receives an update message of an operation op2 from pj
at t, the message was sent by pj at t2 in the interval
[t − d, t − (d − u)]. If t < t1 + d − u holds, it implies
t2 < t1. In this case, pi considers (op2, op1) ∈ PO.
At t1 + d − u, pi checks all occurrences of operations
op such that (op, op1) ∈ PO (for reflexivility, consider
(op1, op1) ∈ PO). Then, pi informs all processes of this
relation by broadcasting a report message which con-
tains a set of occurrences of operations whose update
message were received by pi before t1 + d−u. When pi
receives a report message, it augments PO with the re-
lation informed by the report message and then taking
its transitive closure.

The process pi returns a response for an opera-
tion op1 as follows. If op1 is ack-type, pi returns the
response for op1 after u since the invocation. If op1
is val-type, after 2d since an invocation of op1, pi sets
a total order T O on occurrences of operations whose
report messages have been received by pi. This total
order T O is extended from PO by ordering unordered
pairs by process identifiers. Then, pi applies the oper-
ations to its local copy in this order up to op1. At that
time, pi knows a response value for op1, and returns a
response for op1.

Now we modify this implementation for wait-
freedom. Only the problem is the case where some
process crashes soon after some ack-type operation op1
completed in the process. Once an ack-type operation
is invoked at some process, the operation completes af-
ter u since the invocation and the process broadcasts
the corresponding report message after d− u from the
invocation. If u < d − u holds and the process crashes
after op1 completes but before it broadcasts the mes-
sage, any other process is not informed of the prece-
dence relation about this operation. In this case, when
some process pi attempts to obtain a response value of
its operation, pi may apply op1 to its local copy prior
to some operation op2 that is really prior to op1 in a
history. Such violation can be avoided as follows. If
op2 precedes op1 in a history as in Fig. 6, every process
including pi receives an update message of op2 prior to
an update message of op1. In the modified implemen-

Fig. 6 Case where a process crashes before broadcasting a re-
port message.

variables
op ts, type timestamp ;
local copy, type value of theobject, init initial value of the

object;
update buffer , init empty;

transition functions of process pi

Invoke(pi, op) :
ReadClock(pi, local cl);
BroadCast(pi, update(op, (local cl, i))); /* update message */
if op is ack-type then TimerSet(pi, u, ack);
else /* op is val-type */

op ts := (local cl, i); TimerSet(pi, d + u, val);

Receive(pi, pj , update(v, (recvd cl, recvd uid))) :
update buffer := update buffer ∪ (op, (recvd cl, recvd uid))

Alarm(pi, ack) :
Response(pi, res) where res is a unique response value for

current op;

Alarm(pi, val) :
while op ts ≥ min{ts|(op, ts) ∈ update buffer} do

smallest := (op, ts) where ts is the smallest in update buffer ;
apply smallest to local copy;
update buffer := update buffer − {smallest};

Response(pi, res);

Stop(pi) :
No events can happen after this event.

Fig. 7 Implementation generalRB−uC . (The code for pi.)

tation, processes broadcast such receipt orders in their
report messages. When a process applies operations to
its local copy, if some report message brings that an
update message of op2 is received before one of op1 and
no report message brings the reverse, the process ap-
plies op2 prior to op1. This modification can achieve
wait-freedom without additional response time.

Theorem 9: The implementation generalRB−AC is
a wait-free linearizable implementation of any deter-
ministic object which achieves res time(opa) = u and
res time(opv) = 2d on an asynchronous clock model
using reliable broadcasts, where opa is any ack-type op-
eration and opv is any val-type operation. ✷

4.2 u-Synchronous Clocks

Next, we propose an implementation of a general ob-
ject on u-synchronous clock model, which we call
generalRB−uC . It achieves res time(opa) = u and
res time(opv) = d + u. The program code for pi is
given in Fig. 7.
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In this implementation, the common order to all
processes is decided only by a timestamp assigned to
each operation. When an operation op is invoked at
pi, pi assigns the value of its local clock as a times-
tamp to op, and broadcasts an update message with
the timestamp. When a process receives an update
message, it stores the information in its update buffer.
Since the difference between any pair of local clock val-
ues is at most u and message delays are at most d,
the process does not receive an update message with
smaller timestamp than an operation op after d + u
since the invocation of the operation op. Therefore, if
op is val-type, pi can decide the total order of opera-
tions with smaller timestamp at that time and obtain
its response value. And then, it returns the response.
For an ack-type operation, the process need not ob-
tain its returned value but need u for linearizability.
If a process crashes while an operation, the operation
is left pending. In such a case, all correct processes
receive the update message, or no processes receive it
because of a reliable broadcast. Therefore, the imple-
mentation generalRB−uC works correctly in the case
where a process gets faulty.

Theorem 10: The implementation generalRB−uC is
a wait-free linearizable implementation of any deter-
ministic object which achieves res time(opa) = u and
res time(opv) = d+u on a u-synchronous clocks model
using reliable broadcasts, where opa is any ack-type op-
eration and opv is any val-type operation. ✷

5. Conclusions

In this paper, we have presented wait-free linearizable
implementations shown in Table 2, which are four im-
plementations of read/write registers and two imple-
mentations of general objects. In general, an imple-
mentation on an asynchronous clock model needs longer
worst-case response times than an implementation on
a u-synchronous clock model if the other conditions are
the same. In an asynchronous clock model, if processes
in the system execute a synchronization procedure (e.g.
procedure Synch[7] for a reliable broadcast model) to
make the difference between any pair of local clock val-
ues at most u, we can apply an implementation for
a u-synchronous clock model. Taking costs of the syn-
chronization procedure into consideration, implementa-
tions for a u-asynchronous clock model is more effective
in the case where operations are invoked many times in
an asynchronous clock model.

Some open problems are left. Some lower bound
results as to worst-case response times in linearizable
implementations were presented [4]–[6] . There are gaps
between their results and our results. The other open
problem is about linearizable implementations of gen-
eral objects on an unreliable broadcast model. We can
easily construct a wait-free linearizable implementation

which provides operations with response time propor-
tional to the number of processes. However, we do not
know whether there exists a wait-free linearizable im-
plementation which provides operations with shorter
response time.
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