
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 16, 553–566, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Non-Scan Approach to DFT for Controllers Achieving
100% Fault Efficiency

SATOSHI OHTAKE, TOSHIMITSU MASUZAWA AND HIDEO FUJIWARA
Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma,

Nara 630-0101, Japan
ohtake@is.aist-nara.ac.jp

masuzawa@is.aist-nara.ac.jp

fujiwara@is.aist-nara.ac.jp

Received June 4, 1999; Revised August 3, 2000

Editor: S. Demidenko

Abstract. This paper presents a non-scan design-for-testability method for controllers that are synthesized from
FSMs (Finite State Machines). The proposed method can achieve complete fault efficiency: test patterns for a
combinational circuit of a controller are applied to the controller using state transitions of the FSM. In the proposed
method, at-speed test application can be performed and the test application time is shorter than previous methods.
Moreover, experimental results show the area overhead is low.

Keywords: non-scan design for testability, complete fault efficiency, controllers, at-speed test

1. Introduction

Testing of large VLSI circuits is a well-known hard
problem. It is necessary to reduce the cost of testing
and to enhance the quality of testing. The cost of testing
is estimated by test generation time and test applica-
tion time. The quality of testing is estimated by fault
efficiency.1 Therefore, we have to reduce test genera-
tion time and test application time and to enhance fault
efficiency.

For combinational circuits, efficient test generation
algorithms are proposed [1] to generate test patterns
and complete (100%) fault efficiency can be achieved.
On the other hand, for sequential circuits, ordinary test
generation algorithms generally can not attain com-
plete fault efficiency within reasonable time since the
search space of test generation grows explosively as the
number of flip-flops (FFs) increases. Therefore, sev-
eral design-for-testability (DFT) methods for sequen-
tial circuits are proposed.

One of the most commonly used DFT methods for
sequential circuits is the full-scan DFT method [1].
A sequential circuit consists of a combinational logic
block and a state register (set of FFs). In order to con-
trol and to observe the value of the state register, the
full-scan DFT method replaces each FF in the state
register with a scannable FF. By considering the state
register as primary inputs/outputs, a combinational test
generation algorithm can be used to obtain a test se-
quence with short test generation time and to achieve
complete fault efficiency. However, as the number of
FFs of the state register becomes larger, test applica-
tion time becomes longer because of scan in/out opera-
tions. Furthermore, this method excludes at-speed test
application (test application at the operational speed).
Maxwell et al. [2] show that the number of physi-
cal faults detected by applying test patterns for stuck-
at faults at the operational speed is larger than that
at slow speed. Therefore, at-speed test application is
important.



554 Ohtake, Masuzawa and Fujiwara

A non-scan DFT method which allows at-speed test
application is proposed by Patel et al. [3]. In their
method, for a sequential circuit, a set of FFs in the
state register is selected to control the values of those
FFs directly from primary inputs. To make those FFs
controllable, multiplexers are inserted in front of those
FFs. If the number of primary inputs is larger than or
equal to the number of FFs in the state register, all the
FFs in the state register can be controlled from primary
inputs, and thus a combinational test generation algo-
rithm can be used. On the other hand, if the number
of primary inputs is smaller than the number of FFs
in the state register, some FFs are not directly control-
lable from primary inputs. In this case, a sequential
test generation algorithm must be used.

Finite state machine (FSM) based non-scan DFT ap-
proaches are also proposed. In [4], a method to aug-
ment an arbitrary FSM to an easily testable FSM by
adding two special input symbols and an efficient pro-
cedure to construct a checking experiment for the aug-
mented FSM are proposed. This method is based on
checking experiments and focuses only state transition
checking.

A DFT method for PLA-based FSMs is proposed in
[5]. In this method, the output and state equations of a
FSM are modified to incorporate a scan-like function
in a PLA. In this method, test application time is long
due to scan-like operation.

FSM synthesis for testability methods are proposed
in literature [6] and [7]. In these methods, given
an FSM, to make memory elements fully control-
lable/observable, test functions are embedded to the
given FSM. Therefore these approaches can apply a
combinational test generation algorithm to a synthe-
sized circuit of the augmented FSM. Test application
time of these methods is long because state initializa-
tion and distinguishing sequence are required for each
test pattern of the circuit. In [8], a method which is
similar to these method for PLAs is proposed. In this
method, given an FSM, fault tolerant test functions are
embedded to the given FSM and then the test functions
are not disabled by some fault in a synthesized circuit
of the augmented FSM.

Synthesis for testability method for FSMs based on
strong-connectivity is proposed in [9]. This method can
improve connectivity of state diagrams and hence can
improve testability of synthesized circuits of the aug-
mented state diagrams.

In this paper, we present a new non-scan DFT
method for controller circuits of VLSIs which guaran-
tees complete fault efficiency. In general, a controller

circuit is represented by an FSM at register-transfer
level. We use information of state transitions of the
FSM. In this method, test patterns for a combinational
logic block of a controller is generated using a com-
binational test generation algorithm. Each generated
test pattern consists of the values of primary inputs
and the state register. If the value of the state register
can be stored by state transitions from the reset state,
the test pattern can be applied using the state transi-
tions. However, some test patterns may contain val-
ues of the state register that cannot be stored by state
transitions from the reset state. We call states corre-
sponding to such valuesinvalid states. We append an
extra logic to the controller so that it generates those in-
valid states. Moreover, in order to observe responses of
the combinational logic block, we append observation
points (additional test output pins) in front of the state
register. Partial scan approaches to set those invalid
states to state register are proposed in [10–12]. How-
ever, these approaches require a sequential test gener-
ation algorithm and complete fault efficiency can not
always be achieved. Furthermore, in these approaches,
test application time is long and at-speed testing can
not be performed. Although our proposed method has
the following advantages:

1. Test patterns can be generated by combinational test
generation algorithms.

2. Complete fault efficiency can be achieved.
3. Test application time is shorter than previous

methods.
4. At-speed testing can be performed.

In this paper, we also evaluate the effectiveness of
the proposed method by experiments with MCNC’91
FSM benchmarks. The experimental results show that
the proposed method is effective and the area overhead
is low.

This paper is organized as follows: Section 2 gives
some definitions. Section 3 describes an overview of
our approach. Section 4 presents a non-scan DFT
method for controllers. Section 5 presents a test gener-
ation method and a test application method. Section 6
shows comparison of the proposed method with previ-
ous methods and presents experimental results.

2. Preliminaries

In register transfer level (RTL) description, a VLSI cir-
cuit generally consists of a controller and a data path.



A Non-Scan Approach to DFT for Controllers 555

Fig. 1. A finite state machine (FSM).

In this paper, we consider only controllers. A controller
is described by a finite state machine (FSM). An FSM
(see Fig. 1) has one reset state, and it goes to the reset
state regardless of the current state when reset signal is
supplied. A controller is realized by a sequential cir-
cuit (see Fig. 2) which is synthesized from an FSM by
logic synthesis. A sequential circuit consists of a com-
binational logic block (CC) and a state register (SR). In
the logic synthesis, astate assignmentis determined to
assign a value of the SR to each state of the FSM. In this
paper, for simplicity, we assume that only a single value
is assigned to each state. This assumption makes no
restriction on sequential circuits under consideration.
Even if the case that two or more values are assigned
to one state for a sequential circuit, our method can
be applied to the sequential circuit by regarding those
values as different states of the FSM.

Let n be the number of FFs in the SR of a sequen-
tial circuit synthesized from an FSM. Then the SR can

Fig. 2. A sequential circuit.

represent 2n states which can be classified intovalid
statesandinvalid statesas follows.

Definition 1. For any value of the SR in a sequential
circuit synthesized from an FSM, if the corresponding
state of the value is reachable from the reset state, then
the state is called avalid state(see Fig. 3). Otherwise,
the corresponding state is called aninvalid state.

In this paper, we consider testing of the combina-
tional logic block in a sequential circuit under the single
stuck-at fault model. In order to guarantee complete
fault efficiency, we first extract acombinational test
generation modelfrom a given sequential circuit, and
then generate test patterns for the combinational test
generation model. The combinational test generation
model is defined as follows.

Definition 2. For a sequential circuit (Fig. 2), a com-
binational circuit extracted from the sequential circuit
by replacing the SR with pseudo primary inputs and
pseudo primary outputs is called acombinational test
generation model(Fig. 4).

Each test pattern for the combinational test genera-
tion model consists of two values; one corresponding
to primary inputs (PIs) and the other corresponding to
pseudo primary inputs (PPIs). We classify those test
patterns into two classes as follows.

Definition 3. If the value of PPIs of a test pattern
is a valid state, the test pattern is called avalid test
pattern. Otherwise, the test pattern is called aninvalid
test pattern. A valid state that appears in some valid
test pattern is called avalid test state, and an invalid



556 Ohtake, Masuzawa and Fujiwara

Fig. 3. Valid states and invalid states.

Fig. 4. A combinational test generation model.

state that appears in some invalid test pattern is called
an invalid test state(see Fig. 3).

3. Overview

In this section, we give an overview of our non-scan
DFT method.

For a sequential circuit synthesized from an FSM,
our method achieves complete fault efficiency with
short test generation time and allows at-speed test. In
order to generate a test sequence and achieve complete
fault efficiency with short test generation time, we gen-
erate test patterns for the combinational test generation
model of the sequential circuit using a combinational
test generation algorithm. Each of test patterns con-
sists of the values of primary inputs (PIs) and pseudo
primary inputs (PPIs). In order to apply a test pattern to
the combinational logic block, we have to set the value

of PPIs of the test pattern to the SR of the sequential
circuit. If the value corresponds to a valid state (i.e.,
the test pattern is a valid test pattern), the value of PPIs
can be set to the SR using original state transitions of
the FSM.

On the other hand, if the value corresponds to an
invalid state (i.e, the test pattern is an invalid test pat-
tern), the value of PPIs can not be set to the SR using
state transitions of the FSM. In order to set the invalid
state to the SR, we append an extra logic which gener-
ates all invalid test states to the synthesized sequential
circuit. In order to observe responses of the combina-
tional logic block, we also append observation points
(additional test output pins) in front of the SR. Note that
we just append the extra logic but do not change the
combinational logic block. This guarantees complete
fault efficiency.

We show details of the non-scan DFT method in
Section 4 and the corresponding test generation method
and test application method in Section 5.

4. Design for Testability

In this section, we propose a non-scan DFT method for
controllers.

4.1. Processes of DFT

We assume that a controller is given as an FSM. A
non-scan DFT method for a controller consists of the
following five steps.



A Non-Scan Approach to DFT for Controllers 557

Step 1: Logic synthesis.Given an FSM, we synthesize
a sequential circuit from the FSM. Here, we assume
that the information of the state assignment can be
utilized in the following steps.

Step 2: Combinational test generation.From the syn-
thesized sequential circuit, we extract the combi-
national test generation model. Then, we generate
test patterns for the combinational test genera-
tion model using a combinational test generation
algorithm.

Step 3: Extracting invalid test states.We classify the
test patterns generated at the previous step into valid
test patterns and invalid test patterns and obtain a set
of valid test states and that of invalid test states.

Step 4: Appending an extra logic.If the set of invalid
test states is not empty, we append an extra logic that
can set all invalid test states to the SR as follows.
Otherwise, we skip to Step 5.

Step 4.1: SynthesizingISG. We synthesize a combi-
national logic called aninvalid test state generator
ISG that can generate all invalid test states as fol-
lows. First, we generate an FSM that can traverse
all invalid test states from the reset state of the
given FSM (see Fig. 5). The traversing order and
the input values causing these transitions can be
determined arbitrarily. We can achieve complete
fault efficiency despite of them while the amount
of hardware overhead depends on them. Then,
theISG is synthesized from the generated FSM.

Fig. 5. An FSM traversing invalid test states.

Notice that, the state assignment of these invalid
test states is already determined at Step 1 and
Step 2.

Step 4.2: AppendingISG.TheISG generated above
is appended to the sequential circuit synthesized at
Step 1 with a multiplexer (MUX), a mode switch-
ing signalt and state output signalst out (Fig. 6).
The mode switching signalt controls the MUX
and is set to one only when an invalid test state
must be set to the SR during test. The state output
signalst out is used to observe the responses of
test patterns.

The SR of the sequential circuit can represent 2n

(n: the number of FFs of the SR) states. The num-
ber of invalid test states is at most the number of
test patterns. It is conceivable that the number of
invalid test states is much smaller than that of states
represented by the SR. Thus we expect that the test
application time does not become long and the hard-
ware overhead caused by the extra logic is not high.
The transitions to invalid test states are used only
during test application. Therefore, we can append
the extra logic to the synthesized sequential circuit
without changing the combinational logic block.

Step 5: Adding hold mode to the state register.Finally,
we add hold mode to the SR (Fig. 6). This hold mode
is utilized to reduce test application time. We give
the details in Section 5. The hold mode can be
implemented by one of the following ways.



558 Ohtake, Masuzawa and Fujiwara

Fig. 6. A controller augmented with an invalid test state generator.

Fig. 7. Implementations of hold mode.

1. The most commonly used implementation of the
hold mode is appending an MUX in front of the
SR (Fig. 7(a)). The hold/load signal is connected
to the address line of the MUX and selects the
next state or the present state of the SR.

2. The hold mode is implemented by appending an
AND gate to the clock port of the SR (Fig. 7(b)).
The inputs of the AND gate is the clock signal of
the controller and the hold/load signal. The clock
signal is masked if the hold/load signal is zero.

While we assume a controller is given as an FSM,
this assumption makes no restriction on controllers un-
der consideration. Even in the case that a controller is
given as a gate-level circuit, this method can be applied
by extracting an FSM from the circuit using a state ma-
chine extraction algorithm (e.g. one available in SIS
[13]).

Example 1. Given an FSM of Fig. 1, we apply this
DFT method. The FSM has 10 states from S0 to S9.
First, we synthesize a sequential circuit of Fig. 2 from
the FSM. The sequential circuit has an SR which con-
sists of 4 FFs. The SR represents 16 states (Fig. 3): 10
valid states (from S0 to S9) and 6 invalid states (from
IS1 to IS6). Second, we obtain the combinational test
generation model of Fig. 4 from the sequential circuit
and generate test patterns of the combinational test gen-
eration model using a combinational test generation
algorithm. In the third step of our DFT, we classify
these test patterns into valid test patterns and invalid
test patterns and obtain sets of valid test states and
invalid test states (Fig. 3). The set of valid states is
{S0, S1, S2, S4, S9} and the set of invalid test states
is {IS1, IS2, IS3}. Then, we design anISG which
implements the transitions S0→IS1→IS2→IS3→S0
(Fig. 5) and append theISG to the sequential circuit



A Non-Scan Approach to DFT for Controllers 559

with an MUX (Fig. 6). Finally, we add hold mode to
the SR.

4.2. Delay Overhead

For a sequential circuit (a controller), the proposed DFT
method appends an MUX in front of the SR and add
hold mode to the SR. Thus, a delay overhead is caused
at normal operation of the controller due to the MUX
and an extra logic for hold mode of the SR. However,
the delay overhead is the same as the full-scan DFT
method. Moreover, controllers can be designed and
synthesized with taking the delay overhead into con-
sideration because the delay overhead can be estimated
at the first step of designing controllers.

On the other hand, anISG gives no affect to the nor-
mal operation of a controller. If we can synthesize the
ISG with shorter delay than the combinational logic
block, we can perform test application at the normal
operation speed.

4.3. Area Overhead

For a sequential circuit (a controller), the proposed DFT
method has an area overhead due to theISG, the MUX,
and an extra logic for hold mode of the SR. The areas of
the MUX and the extra logic are the same as that of the
full-scan DFT method. This method appends theISG
which generates the invalid test states to the sequential
circuit. The order of the invalid test states generated
by theISG does not affect fault efficiency. However,
it is conceivable that the order affects the area of the
ISG. Therefore, we can minimize the area overhead
by considering the appropriate order of the invalid test
states.

If we design a sequential circuit as shown in Fig. 8,
we can control the values of some FFs in the SR directly
from primary inputs. In this case, only the values of the
FFs which can not be controlled directly from primary
inputs have to be generated by theISG, and thus, the
number of invalid states generated by theISG are re-
duced. Therefore, the area of theISG can be reduced.

4.4. Observation Points

We suppose thatt out shown in Figs. 6 and 8 is an
observation point for testing. Thus primary output pins
for t out are required. However, due to limitation of
the number of primary output pins, we may not use

Fig. 8. An example of invalid test state generation using
primary inputs.

sufficient primary output pins fort out. An RTL circuit
generally consists of a controller and a data path. When
testing the controller, the data path is not used. Hence
we can use the primary output pins of the data path
as the observation points of the controller. Thus,t out
can be observed at the primary output pins of the data
path by inserting an extra MUX in front of the primary
output pins. In the case when the data path does not
have sufficient primary output pins, we can observe a
parity of t outusing an XOR tree. If an error of a fault
is observed at an odd number oft out, the fault can be
detected. If an error of a fault is observed at an even
number oft out, the fault can not be detected. Fujiwara
et al. [14] show that, for most faults, an error of a fault
is observed at an odd number of outputs by experiments
with ISCAS’89 benchmarks.

5. Test Application Method

In this section, we propose a test application method
corresponding to the proposed non-scan DFT method
for controllers. Here, we only discuss application of
test patterns because we assume that responses of test
patterns can be observed as mentioned above.

5.1. Applying Valid Test Patterns

Each valid test pattern can be applied to a sequential
circuit using normal operation of the sequential circuit
as follows.



560 Ohtake, Masuzawa and Fujiwara

Fig. 9. Applying valid test patterns.

Step 1: Applying PPI value of a test pattern.First,
we find a transition sequence from the reset state to
the valid test state corresponding to the PPI value
of the test pattern. Then, we set the valid test state
to the SR (see Fig. 9) by applying the transition se-
quence under the normal operation mode (the mode
switching signalt = 0).

Notice that, if the combinational logic block contains
a fault, we may not set the valid test state to the SR.
However, the fault can be detected during the above step
because the value loaded into the SR can be observed
from t out.

Step 2: Applying PI value of a test pattern.We apply
the PI value of the test pattern to the primary inputs
of the sequential circuit (see Fig. 9).

Fig. 10. Applying valid test patterns using hold mode of state register.

For a valid test state, there may exist two or more
valid test patterns which contain the valid test state.
Therefore, the length of the test sequence can be re-
duced if we apply the PI values of the test patterns one
after another with holding the PPI value at the SR us-
ing hold mode appended at the fifth step of the DFT
process (see Fig. 10). Here, holding a value in the SR
is calledfreezingthe clock of the SR and the concept of
freezing a clock is proposed by Abramovici et al. [15].

Moreover, a valid test statesj may be reached from
another valid test statesi by transitions of the normal
operation without reset. Therefore, we can reduce the
length of a test sequence if we can setsj to the SR
using the transitions without reset (see Fig. 10). Notice
that, in this case, we have to hold the statesi in the SR
for one more cycle after applying all test patterns that
contain the statesi as (2) in Fig. 10. Hence a transition
sequence which starts from the reset state and traverses



A Non-Scan Approach to DFT for Controllers 561

Fig. 11. Applying invalid test patterns.

all valid test states can set all PPI values to the SR. We
call such a transition sequence avalid test state travers-
ing sequence. Here, there always exists such a valid test
state traversing sequence because any valid test state is
reachable from the reset state and the reset state can
be reached from any state using the reset signal. Let
Lvt andNvp be the length of a valid test state traversing
sequence and the number of valid test patterns, respec-
tively. The length of a test sequence required to apply
all valid test patterns isLvt + Nvp.

We can obtain the shortest test sequence required to
apply all valid test patterns, if we obtain the shortest
valid test state traversing sequence. We can obtain the
shortest valid test state traversing sequence by solv-
ing the traveling salesman problem (TSP) [16] at a di-
rected graph where nodes are all valid test states and
the weight between nodes is the length of the shortest
transition sequence between the two states. Although
TSP is an NP-hard problem, we can obtain the shortest
(or may be nearly shortest) valid test state traversing
sequence using existing heuristic algorithms for TSP.

Notice that, time required to solve TSP is much
shorter than the total test generation time of our method
because the number of states of the FSM is generally
much smaller than that of gates of the test generation
model of the sequential circuit synthesized from the
FSM.

Example 2. We consider the sequential circuit applied
our DFT method of Example 1. The set of valid test
states is{S0, S1, S2, S4, S9}. A valid test state travers-
ing sequence required to apply the all invalid test
pattern is S0→S1→S4→S0→S2→S5→S9. In the se-
quence, if we reach a valid test state, we hold the state
at the SR and apply the all test patterns which contains
the valid test states from the primary inputs (Fig. 10).

5.2. Applying Invalid Test Patterns

Each of invalid test patterns can be applied in the same
way as valid test patterns using theISG (invalid test
state generator). In the rest of this paper, for simplicity,
we assume that primary inputs are not used as inputs of
theISG. The transition modes are switched as shown
in the timing chart of Fig. 11.

The length of the shortest invalid state transition se-
quence (included applying reset signal at the begin-
ning) is the number of invalid test states plus 1 because
theISG generates all invalid test states in turn. There-
fore, lettingNis andNip be the numbers of invalid test
states and invalid test patterns, respectively, the length
of a test sequence required to apply all invalid test pat-
terns isNis + Nip + 1. In the worst case, the length of
the test sequence is onlyNip × 2+ 1.

Example 3. We consider the sequential circuit applied
our DFT method of Example 1. The set of invalid test
states is{IS1, IS2, IS3} and the invalid state transition
sequence of theISG is S0→IS1→IS2→IS3. From
the reset state, we can generate the transition sequence
if the mode switching signalt is one. The invalid test
patterns can be applied by the same way as Example 2
(Fig. 11).

5.3. Testing of Extra Logic

Appended logic circuits in the DFT process are an
ISG and an MUX added in front of the SR. Since
theISG is not used at the normal operation, we test
theISG only to confirm that the invalid test states are
generated correctly. It is performed by observing state
output signalst out at invalid test pattern application,



562 Ohtake, Masuzawa and Fujiwara

simultaneously. Testing of the MUX is performed as
follows. Since appending the MUX in front of SR is
known beforehand, we can generate test patterns for
a combinational test generation model including the
MUX.

6. Advantage of Our Method

In this section, we compare our DFT method with the
full-scan DFT method [1] and Patel’s non-scan DFT
method [3] in test generation time, fault efficiency, test
application time and area overhead. Then we present
the results of experiments.

6.1. The Full-Scan DFT Method

Given a sequential circuit, the full-scan DFT method
guarantees complete fault efficiency and can generate
a test sequence with short test generation time because
a test generation model of the sequential circuit is a
combinational circuit. However, the method requires
scan in/out operations for applying and observing test
patterns, and thus it requires extremely long test ap-
plication time. LettingAMUX andNFF be the area of a
MUX (two one bit inputs and one bit output) and the
number of FFs, respectively, the area overhead of the
method isNFF× AMUX because each FF of the SR is
replaced with a scannable FF. LettingNpat be the num-
ber of test patterns, the test application time required
to apply all test patterns and to observe the responses
is Npat× (NFF+ 1) + NFF. Therefore, if the number
of FFs of the SR is larger, the test application time is
longer.

This method can be applied to large sequential cir-
cuits. However, this method does not allow at-speed
test application because the speed of scan sifting oper-
ation is slower than the normal operation speed.

6.2. Patel’s Non-Scan DFT Method

Given a sequential circuit, Patel’s non-scan DFT me-
thod appends an MUX to control the values of some
FFs in the SR directly from primary inputs. The control-
lable FFs are selected to cut feedback loops except self
loops and to maximize controllability. The observabil-
ity of the circuit is improved by inserting observation
points which are connected to an XOR tree circuit with
a primary output.

If the number of primary inputs is equal to or larger
than that of FFs in the sequential circuit, all FFs can be
controlled directly from the primary inputs, and thus
this method can guarantee complete fault efficiency
and can generate a test sequence with short test gener-
ation time because the test generation model is a com-
binational circuit. In this case, the area overhead is
NFF × AMUX . In order to apply each of test patterns,
two system clock cycles are required because the value
of the SR is set through primary inputs. The test ap-
plication time required to apply all test patterns and to
observe the responses isNpat× 2+ 1 cycles.

On the other hand, if the number of primary inputs
is smaller than that of FFs in the sequential circuit, this
method can not guarantee complete fault efficiency and
requires long test generation time generally because the
test generation model is a sequential circuit. Moreover,
the generated test sequence tends to become longer be-
cause the sequence contains initialization sequences of
FFs which are not controlled directly from primary in-
puts. In this case, lettingNPI be the number of primary
inputs, the area overhead isNPI× AMUX . Letting Lseq

be the length of obtained test sequence, the test appli-
cation time required to apply all test patterns and to
observe the responses isLseq× 2+ 1 cycles.

This method can be applied to large sequential cir-
cuits and at-speed test application can be performed.

6.3. Our Method

Given a sequential circuit, our non-scan DFT method
can guarantee complete fault efficiency. Test generation
of our method for a controller consists of generating
test patterns for the test generation model and obtain-
ing a valid test state traversing sequence of the FSM.
Test sequence for the controller is constructed from
these test patterns using the valid test state traversing
sequence. Those test patterns can be generated with
short test generation time because the test generation
model is a combinational circuit. Notice that, time re-
quired to obtain the valid test state traversing sequence
is negligible compared to the combinational test gen-
eration time. LettingAISG be the area of theISG, the
area overhead isNFF× AMUX + AISG . TheISG is a
combinational logic which generates only invalid test
states. In Section 6.4, we evaluate the area with expe-
riments using FSM benchmarks. LettingLvt and Nis

be the length of a valid test state traversing sequence
and the number of invalid test states, respectively, the
test application time required to apply all test patterns



A Non-Scan Approach to DFT for Controllers 563

and to observe the responses isLvt+ Nis+ Npat+ 2
cycles.

In this method, at-speed test application can also be
performed. However, this method is applicable only to
sequential circuits which are designed as FSMs.

6.4. Experimental Results

We show experimental results with MCNC’91 FSM
benchmark set [17]. The benchmark characteristics and
results of logic synthesis are shown in Table 1. In our ex-
periment, we used a logic synthesis tool AutoLogic II
(MentorGraphics) with sample libraries of Mentor-
Graphics on S-4/20 model 712 (Fujitsu) workstation.
Columns “circuit”, “#states”, “#PIs” and “#POs” de-
note FSM name, the number of states, the number
of primary inputs and the number of primary outputs
of original FSMs, respectively. Columns “#FFs” and
“area” denote the number of FFs and circuit areas after
synthesis, respectively. Here, areas are estimated using
gate equivalent of the library cell area.

Table 2 shows test generation results of each method.
We used a combinational/sequential test generation
tool TestGen (Sunrise) on the workstation. Columns
“Scan”, “Patel” and “Ours” in column “TG time” de-
note test generation time in seconds of the full-scan
method, Patel’s method and our method, respectively.
Test generation time of our method includes time for
generating valid test state traversing sequences. In this
experiments, in order to obtain a valid test state travers-
ing sequence, we implemented a simple algorithm to
solve the TSP. Column “TA time” denotes test appli-
cation time in cycles.

Test generation time of the proposed method is al-
most the same as that of the full-scan DFT method
because test patterns are generated for the same com-
binational test generation model and time to solve the
TSP is short. In the column “circuit”, symbol “∗ ” de-
notes that the number of primary inputs is larger than
or equal to the number of FFs. In Patel’s method, the
combinational test generation algorithm can also be ap-
plied to these circuits. Thus Patel’s method guarantees
complete fault efficiency for these circuit. Experimen-
tal results show that fault efficiency of s298 is 99.55%
and other circuits are 100% in Patel’s method. The full-
scan method and our method guarantee complete fault
efficiency for all circuits.

Test application time of the full-scan and Patel’s
methods are calculated from the formulas mentioned

Table 1. FSM benchmark characteristics and areas after
logic synthesis.

circuit #states #PIs #POs #FFs area (gates)

bbara 10 4 2 4 410.30

bbsse 16 7 7 4 781.20

bbtas 6 2 2 3 87.60

beecount 7 3 4 3 331.50

dk14 7 3 5 3 295.10

dk16 27 2 3 5 510.40

dk27 7 1 2 3 92.00

dk512 15 1 3 4 220.80

ex1 20 9 19 5 2740.50

ex2 19 2 2 5 416.90

ex3 10 2 2 4 192.80

ex4 14 6 9 4 479.20

ex5 9 2 2 4 183.70

ex7 10 2 2 4 189.60

keyb 19 7 2 5 1835.40

lion9 9 2 1 4 322.10

opus 10 5 6 4 567.60

planet1 48 7 19 6 2791.10

planet 48 7 19 6 2791.10

pma 24 8 8 5 1068.60

s1488 48 8 19 6 6190.20

s1494 48 8 19 6 6242.80

s1 20 8 6 5 2396.00

s208 18 11 2 5 2361.30

s27 6 4 1 3 416.30

s298 218 3 6 8 8720.80

s386 13 7 7 4 1241.10

s420 18 19 2 5 2217.50

s510 47 19 7 6 1184.20

s820 25 18 19 5 4411.00

s832 25 18 19 5 4543.70

sse 16 7 7 4 781.20

styr 30 9 10 5 2748.90

tma 20 7 6 5 802.70

train11 11 2 1 4 364.50

in Sections 6.1 and 6.2, respectively. Test application
time of our method is calculated from the formula men-
tioned in Section 6.3. In our method, for all circuits, the
length of each test sequence is shorter than other two
methods. Particularly, in s298, the ratio of our method
to the full-scan method is one to four and of our method
to Patel’s method is one to fifteen. If a more efficient



564 Ohtake, Masuzawa and Fujiwara

Table 2. Test generation results of each method.

TG time (sec) TA time (cycles)

circuit Scan Patel Ours Scan Patel Ours

∗bbara 0.99 0.99 1.00 334 131 87
∗bbsse 1.79 1.79 1.81 399 159 101

bbtas 0.16 0.27 0.17 71 121 27
∗beecount 0.67 0.67 0.69 199 95 60
∗dk14 0.46 0.46 0.47 231 113 68

dk16 1.08 12.97 1.09 623 1661 153

dk27 0.21 0.39 0.23 71 169 31

dk512 0.34 2.21 0.35 199 537 72
∗ex1 14.82 14.82 14.86 1613 527 312

ex2 0.75 8.79 0.76 485 1513 123

ex3 0.48 1.74 0.49 244 575 71
∗ex4 0.95 0.95 0.97 304 119 78

ex5 0.44 1.52 0.46 244 545 71

ex7 0.35 1.46 0.36 194 587 60
∗keyb 16.79 16.79 16.81 1409 491 270

lion9 0.45 1.52 0.46 239 529 65
∗opus 1.11 1.11 1.12 394 151 106
∗planet1 11.56 11.56 11.59 1574 453 405
∗planet 12.72 12.72 12.75 1574 453 405
∗pma 4.17 4.17 4.18 947 315 200
∗s1488 72.07 72.07 72.12 3149 871 629
∗s1494 78.26 78.26 78.32 2981 859 633
∗s1 15.11 15.11 15.13 1241 433 262
∗s208 31.51 31.51 31.54 1607 497 301
∗s27 0.88 0.88 0.89 199 97 61

s298 254.01 9581.75 254.71 9890 36251 2446
∗s386 3.59 3.59 3.61 514 207 123
∗s420 22.48 22.48 22.50 1439 465 273
∗s510 3.56 3.56 3.58 916 269 194
∗s820 48.50 48.50 48.55 2225 727 442
∗s832 50.91 50.91 50.95 2297 787 450
∗sse 1.73 1.73 1.75 399 159 101
∗styr 16.37 16.37 16.41 1367 475 293
∗tma 2.41 2.41 2.43 653 229 156

train11 0.62 2.35 0.63 274 779 77

algorithm is shows used to solve the TSP, the test ap-
plication time of our method may become shorter.

Table 3 area overheads of each method. Columns
“Scan”, “Patel” and “Ours” in column “#MUXes” de-
note the number of MUXes of each method. The
MUXes overhead of our method is equal to the full-scan
method and is generally larger than Patel’s method.

Column “OurISG area” denotesISG area overhead in
gate equivalent and percentage of the area for the corre-
sponding controller. Here, eachISG was synthesized
as Fig. 8. Although the order of generating valid test
states affect the area of theISG, in this experiments,
we determined simply the order. Area overheads of
circuits with “ ∗ ” in Table 2 are all zero because these



A Non-Scan Approach to DFT for Controllers 565

Table 3. Area overheads of each method.

#MUXes

circuit Scan Patel Ours
OurISG area
(gates (ratio))

bbara 4 4 4 0 (0%)

bbsse 4 4 4 0 (0%)

bbtas 3 2 3 1.20 (1.36%)

beecount 3 3 3 0 (0%)

dk14 3 3 3 0 (0%)

dk16 5 2 5 39.30 (6.13%)

dk27 3 1 3 1.20 (1.30%)

dk512 4 1 4 7.00 (3.17%)

ex1 5 5 5 0 (0%)

ex2 5 2 5 34.70 (8.32%)

ex3 4 2 4 11.70 (6.06%)

ex4 4 4 4 0 (0%)

ex5 4 2 4 12.90 (7.02%)

ex7 4 2 4 14.10 (6.80%)

keyb 5 5 5 0 (0%)

lion9 4 2 4 1.20 (0.37%)

opus 4 4 4 0 (0%)

planet1 6 6 6 0 (0%)

planet 6 6 6 0 (0%)

pma 5 5 5 0 (0%)

s1488 6 6 6 0 (0%)

s1494 6 6 6 0 (0%)

s1 5 5 5 0 (0%)

s208 5 5 5 0 (0%)

s27 3 3 3 0 (0%)

s298 8 3 8 255.60 (2.16%)

s386 4 4 4 0 (0%)

s420 5 5 5 0 (0%)

s510 6 6 6 0 (0%)

s820 5 5 5 0 (0%)

s832 5 5 5 0 (0%)

sse 4 4 4 0 (0%)

styr 5 5 5 0 (0%)

tma 5 5 5 0 (0%)

train11 4 2 4 11.70 (3.20%)

circuits do not requireISGs. The average ofISG area
overhead over the circuits requiringISGs (excluding
the circuits with “∗ ”) is only 3.5%. The smallest over-
head is 0.37% and the largest is only 8.32%. TheISG
area overhead can be more reduced as mentioned in
Section 4.3.

Experimental results show that the proposed method
guarantees complete fault efficiency and generates test
patterns with short test generation time. Although some
benchmarks requireISGs, theISG area overhead is
very small (the average of the area overhead is only
3.5%). Moreover, we also show that test application
time of the proposed method is shorter than other two
methods for all benchmarks.

7. Conclusion

Although the full-scan DFT method can achieve com-
plete fault efficiency with short test generation time, it
needs extremely long test application time. Moreover,
it does not allow at-speed test application. Although
Patel’s non-scan DFT method allows at-speed test ap-
plication, it is not guaranteed to achieve complete fault
efficiency with short test generation time.

In this paper, we proposed a new DFT method for
controllers to achieve complete fault efficiency with
short test generation time. The DFT method allows at-
speed test application. We also proposed a test appli-
cation method corresponding to the DFT method. Ex-
perimental results show that the test application time
of the proposed method is shorter than that of previous
methods for all FSM benchmarks. The average area
overhead ofISG is only 3.5% for FSM benchmarks
which requireISGs to be appended.

Our future work is to design optimalISG to mini-
mize area overhead ofISG.

Acknowledgments

The authors would like to thanks Drs. Tomoo Inoue
and Michiko Inoue of Nara Institute of Science and
Technology for their valuable discussions. This work
was supported in part by Semiconductor Technology
Academic Research Center (STARC) under the
Research Project.

Note

1. Fault efficiency is the ratio of the number of faults detected and
proved redundant to the total number of faults.

References

1. H. Fujiwara,Logic Testing and Design for Testability, The MIT
Press, 1985.



566 Ohtake, Masuzawa and Fujiwara

2. P.C. Maxwell, R.C. Aitken, V. Johansen, and I. Chiang, “The Ef-
fect of Different Test Sets on Quality Level Prediction: When is
80% Better than 90%?,”Proc. of International Test Conference,
1991, pp. 358–364.

3. V. Chickermane, E.M. Rudnick, P. Banerjee, and J.H. Patel,
“Non-Scan Design-For-Testability Techniques for Sequential
Circuits,” Proc. of 30th ACM/IEEE Design Automation Con-
ference, 1993, pp. 236–241, 1993.

4. H. Fujiwara, Y. Nagao, T. Sasao, and K. Kinoshita, “Easily
Testable Sequential Machines with Extra Inputs,”IEEE Trans-
action on Computers, Vol. c-24, No. 8, pp. 821–826,
1975.

5. S.M. Reddy and R. Dandapani, “Scan Design Using Standard
Flip-Flops,” IEEE Design and Test of Computers, Vol. 4, No. 1,
pp. 52–54, 1987.

6. V.D. Agrawal and K.-T. Cheng, “Finite State Machine Synthesis
with Embedded Test Function,”Journal of Electronic Testing:
Theory and Applications, Vol. 1, pp. 221–228, 1990.

7. S. Kanjilal, S.T. Chakradhar, and V.D. Agrawal, “Test Function
Embedding Algorithms with Application Interconnected Finite
State Machines,”IEEE Transaction on Computer-Aided-Design,
Vol. 14, No. 9, pp. 1115–1127, 1995.

8. S.T. Chakradhar, S. Kanjilal, and V.D. Agrawal, “Finite State
Machine Synthesis with Fault Tolerant Test Function,”Journal
of Electronic Testing: Theory and Applications, Vol. 4, pp. 57–
69, 1993.

9. I. Pomeranz and S.M. Reddy, “Design and Synthesis for Testa-
bility of Synchronous Sequential Circuits Based on Strong-
Connectivity,” Proc. of International Symposium on Fault-
Tolerant Computing, 1993, pp. 492–501.

10. D. Xiang, S. Venkataraman, W.K. Fuchs, and J.H. Patel, “Par-
tial Scan Design Based on State Information,”Proc. of Design
Automation Conference, 1996, pp. 807–812.

11. D. Xiang and J.H. Patel, “A Global Algorithm for the Partial
Scan Design Problem Using Circuit State Information,”Proc. of
International Test Conference, 1996, pp. 548–557.

12. V. Boppana and W.K. Fuchs, “Partial Scan Design Based on State
Transition Modeling,”Proc. of International Test Conference,
1996, pp. 538–547.

13. E.M. Sentovich et al., “SIS: A System for Sequential Circuit
Synthesis,” Technical Report UCB/ERL-M92/41, University of
California, Berkeley, 1992.

14. H. Fujiwara and A. Yamamoto, “Parity-Scan Design to Reduce
the Cost of Test Application,”IEEE Transaction on Computer-
Aided-Design, Vol. 12, No. 10, pp. 1604–1611, 1993.

15. M. Abramovici, K.B. Rajan, and D.T. Miller, “FREEZE!: A
New Approach for Testing Sequential Circuits,”Proc. of Design
Automation Conference, 1992, pp. 22–25.

16. M.R. Garey and D.S. Johnson,Computer and Intractability,
W.H. Freeman and Company, 1979.

17. S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide,” Technical Report 1991-IWLS-UG-Saeyang, Microelec-
tronics Center of North Carolina, 1991.

Satoshi Ohtakereceived the B.E. degree in computer science from
the University of Electro-Communications, Tokyo, Japan, in 1995,
and M.E. and Ph.D. degrees in information science from Nara In-
stitute of Science and Technology, Nara, Japan, in 1997 and 1999,
respectively. He was a Research Fellow of Japan Society for the Pro-
motion of Science from 1998 to 1999. Presently he is an Instructor
of Graduate School of Information Science, Nara Institute of Sci-
ence and Technology. His research interests are VLSI CAD, design
for testability and test pattern generation. He is a member of IEEE
and the Institute of Electronics, Information and Communication
Engineers of Japan.

Toshimitsu Masuzawareceived the B.E., M.E. and D.E. degrees in
computer science from Osaka University in 1982, 1984 and 1987. He
had worked at Education Center for Information Processing, Osaka
University between 1987–1990, and had worked at Faculty of Engi-
neering Science, Osaka University between 1990–1994. He is now
an associate professor of Graduate School of Information Science,
Nara Institute of Science and Technology (NAIST). He was also
a visiting associate professor of Department of Computer Science,
Cornell University between 1993–1994. His research interests in-
clude digital systems design and test, distributed algorithms and
parallel algorithms. He is a member of ACM, IEEE, EATCS, the
Institute of Electronics, Information and Communication Engineers
of Japan and the Information Processing Society of Japan.

Hideo Fujiwara received the B.E., M.E., and Ph.D. degrees in elec-
tronic engineering from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with Osaka University from
1974 to 1985 and Meiji University from 1985 to 1993, and joined
Nara Institute of Science and Technology in 1993. In 1981 he was a
Visiting Research Assistant Professor at the University of Waterloo,
and in 1984 he was a Visiting Associate Professor at McGill Uni-
versity, Canada. Presently he is a Professor at the Graduate School
of Information Science, Nara Institute of Science and Technology,
Nara, Japan.

His research interests are logic design, digital systems design and
test, VLSI CAD and fault tolerant computing, including high-level/
logic synthesis for testability, test synthesis, design for testability,
built-in self-test, test pattern generation, parallel processing, and
computational complexity. He is the author of Logic Testing and
Design for Testability (MIT Press, 1985). He received the IECE
Young Engineer Award in 1977, IEEE Computer Society Certificate
of Appreciation Award in 1991, Okawa Prize for Publication in 1994,
and IEEE Computer Society Meritorious Service Award in 1996. He
is an advisory member of IEICE Trans. on Information and Systems
and an editor of IEEE Trans. on Computers, J. Electronic Testing,
J. Circuits, Systems and Computers, J. VLSI Design and others. Dr.
Fujiwara is a fellow of the IEEE and a Golden Core member of the
IEEE Computer Society as well as a member of the Institute of Elec-
tronics, Information and Communication Engineers of Japan and the
Information Processing Society of Japan.


