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Furthermore we have noticed that the final circuit is
simpler than the one obtained by the on-set and off-set
form.

Finally, a solution is always possible by using the
(n -l)-out-of-n code which is a very simple and low-
cost solution for medium-size machines.
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Design of Diagnosable Sequential Machines
Utilizing Extra Outputs
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Abstract-This paper is concerned with the problem of designing
easily testable sequential machines, output-observable machines,
for which there exist very short checking experiments. A sequential
machine for which any initial state can be uniquely determined only
by the output response is said to be output-observable. An algorithm
is developed to modify a given machine to an output-observable one
by adding a minimum number of extra outputs. This method is based
on the fact that the output-observable realization of a given machine
M exists if and only if M is semi-FSR realizable (a special type of
feedback shift register realization).
For the k-output-observable sequential machine, we can find a

checking sequence (010o2 such that co, is an input-output sequence
which passes through all the transitions-of the given state table and
W2 is an arbitrary input-output sequence of length k. Since a checking
sequence must pass through all the transitions of the given state
table, the length of the checking sequence (01(2 is nearly minimum.
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Index Terms-Checking experiments, diagnosable sequential
machines, fault detection, output-observable machines, semi-feed-
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I. INTRODUCTION

THE PROBLEM considered here is the design of easily
testable sequential machines for which there exist

very short checking experiments. A checking experiment
on a sequential machine is the application of input se-
quences to the input terminals and observation of the
output sequences at the output terminals to determine
whether or not the machine is operating correctly. An
approach to the design of checking experiments, called the
transition checking approach, was first introduced by
Hennie [1]. However, for machines without distinguish-
ing sequences, his procedure yields very long test se-
quences. Hence for machines that do not have any
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TABLE I
MACHINE M1

N.S., 1
P.S. x=O x=l

1 4, 0 2, 0

2 3, 0 2, 0

3 4, 1 3, 1

4 5, 1 5, 1

5 5, 1 1, 1

distinguishing sequences, new approaches are proposed
to this problem. One approach is to modify a given machine
by adding extra inputs [2}-E4] or outputs [5]-[10] so
that the modified machine has a distinguishing sequence.
For an n-state, m-input symbol machine, these procedures
give a bound on the length of checking sequences that is
approximately mn2. Therefore, for machines with a large
number of states, these procedures yield very long experi-
ments, which make them impractical.

In order to overcome this, we introduce the output-
observable sequential machines which have checking se-
quences of short length. For a k-output-observable
sequential machine, we can find a checking sequence
COIW2 such that cw is an input-output sequence which passes
through all the transitions of the given state table and
W2 is an arbitrary input-output sequence of length k.
Since a checking sequence must pass through all the transi-
tions of the given state table, it is shown that the pro-
cedure of organizing checking sequences is simple and
systematic.
The first half of this paper describes a method for the

modification of a given machine to an output-observable
one by adding a minimum number of extra outputs. Our
aim is to determine the minimal amount of additional
output logic which is necessary and sufficient to obtain
the property of output observability. This method is
based on the fact that the output-observable realization
of a given machine M exists if and only if M is semi-feed-
back shift register (FSR) realizable. The second half of
this paper presents a procedure for the design of very
short checking experiments for the output-observable
sequential machines.

II. OUTPUT-OBSERVABILITY AND
SEMI-FSR REALIZABILITY

A sequential machine M will be represented by a
quintuple M = (S,I,Z,6,X) where S is a finite set of
states, I is the input alphabet, Z is the output alphabet,
6: S X I* -*-S is the next state function, and X: S X I*
Z* is the output function. The sequential machines con-
sidered in this paper are assumed to be reduced and
strongly connected MVealy machines such that binary
codes are already assigned to their output symbols, i.e.,
the output function X is represented by a direct product
z X *... X zp of binary output functions Zl,...*zp.
A partition on a set of states S is a collection of disjoint

subsets of S, called blocks, such that their set union is S.
A relation ' on S corresponding to a partition 7 is a rela-
tion such that Si Sj, for Si, Sj E S if and only if Si and
Sj belong to the same block of r. 7rr is the partition on S
suchthatSi ' Si ifandonly ifSi S and Si S. 7r+T
is the partition on S such that Si +r Sj if and only if
Si Sj or Si ~ Sj. The following two partitions are called
trivial: the zero R± identity partition 0 ± I in which all
elements of S form one block, and the zero ~. identity
partition 0 a± I in which every block is a singleton. 7r

is a refinement of r (denoted by ir < r) if and only if
Si Si5 implies Si S.
The transition graph (defined in Nichols [16]) of a

partition ir is a graph in which each vertex corresponds to
a block of 7r and there is an arc from vertex vi to vertex v;
if and only if there is a state Sk E Bi (Bi is the block of Xr
corresponding to vertex vi) and an input h1 such that
,3(Sk2t) = Sm E Bj.
A partition 7r is a shift register partition (SRP) [16] if

and only if the transition graph of ir is a subgraph of some
Good diagram [16]. 7r has length 1 if it is a subgraph of the
Good diagram of an I-stage shift register.
As an example, consider machine Ml given by Table I

and a partition ir 1{1;2,3;4;5 }. We obtain the transition
graph shown in Fig. 1 (a). This transition graph is a sub-
graph of the Good diagram of a two-stage shift register
shown in Fig. 1 (b). Therefore, the partition 7r =
{1;2,3;4;5} is an SRP.
The following theorem follows directly from the defini-

tion of SRP.
Theorem 1 (Nichols [11]): A realization of M using a

shift register of length 1 exists if and only if M has an
SRP of length 1.
Note that in this realization, each state is given a single

coding and that the states grouped together in a block of
the SRP are given the same coding in the corresponding
shift register.
Suppose that we are given a list of SRP's of M and

have found a realization using p shift registers of length
k1,k2,-.- ,k, (see Fig. 2). Then, for each shift register in
the realization, there must be a corresponding SRP in the
list. Let 71,72,...-,ir, be the set of SRP's corresponding to
the realization, and let ir = r,r2 ... rp. Then, in this real-
ization, the states grouped together in a block of ir are
given the same coding in the corresponding p shift registers.
We will call this partial FSR (feedback shift register)
realization "semi-FSR realization," and define it as
follows.

Definition 1: Let Yij(j = 1,2,1. .,ki; i = 1,2,.- ,p) be
the internal state variables, and let Yij(t) be the value
of Yij at time t where each ki is a positive integer. A
sequential machine M is called k1,k2, * * *,kp-semi-FSR
realizable with respect to a partition ir if the state machine'
of M can be realized with the state assignment which
satisfies the following conditons.

1 State machine of M = (S,I,Z,5,-) is defined as a triple M, =

(S,I,B) (see [14]).

139



IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1974

TABLE II
STATE ASSIGNMENT

2

3

4

o 1

o 0

o 0

1 0

5 I 1 1

(a)

Fig. 1. (a) Transition graph for 1r = 1; ; 4; in machine M,.
(b) Good diagram for a two-stage shift register.
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Fig. 2. Feedback shift register circuit.

Condition 1: Y,j(t) = Yij (t - 1) for j= 2,3,- -kIt
and i = 1,2, * * *,p.

Condition 2: Si Sj if and only if

(Y11iyY12iy Xlylk i; . Yplij . .. yYpk,i)
f = ~~(YlljYYl2j) * ** lklj; ..* ypljy * ** pkvi

where (ylli, * ,yylki;. ;yP1i,...*ypkpi) denotes a binary
code of the state assignment corresponding to state Si.
When ir is the zero partition, the semi-FSR realizability

coincides with the ordinary FSR realizability. Hence the
semi-FSR realization is a generalization of ordinary FSR
realization.
As an example, consider machine M1 given by Table I

and a partition 7r = {1;2,3;4;5}. The state assignment
shown in Table II satisfies the following conditions.

Condition 1: Y2(t) = Y1 (t 1).

Condition 2: Si ' Si if and only if (yli,y2i) = (ylj,y2j)
where (yli,y2i) denotes a bindary code corresponding to
state Si.

Hence, M1 is 2-semi-FSR realizable with respect to 7r.
Lemma 1: A sequential machine M is k-semi-FSR real-

izable with respect to a partition ir if and only if there is
an SRP of length k in M.

Proof: This can be proved immediately from Theorem
1, Definition 1, and the definition of SRP. Q.E.D.
Lemma 2: A sequential machine M is k1,k2, ,kp-semi-

FSR realizable with respect to ir if and only if there exist
p partitions 71,72,. yi"7rp such that 7ir = 7rl7r2.. 7rp, and for
each i (i = 1,2,..-,p) M is ki-semi-FSR realizable with
respect to 7rw where each ki is a positive integer.

Proof: Suppose that M is k1,k2,-. ,kp-semi-FSR real-
izable with respect to 7r. From Definition 1, there exists a
realization with state variables Yij's satisfying the follow-
ing conditions.

Condition 1: Yij(t) = Yi,.1_(t - 1) for 2 < j < ki and
l<i<p.

Condition 2: Si Si if and only if

Yliy i).. . lki . . .
pl, ,pki

= (yllj,yl2j, ... Ylklj; ...** pl, * pkpj)-

Define the partition 7r (1 < 1 < p) corresponding to the
relation ^ defined as Si, Si if and only if (yIli,* ,Yzy i) =
(yllj, *ylk,j). Then, from this and (1), it is clear that M
is kz-semi-FSR realizable with respect to 7r1(l < 1 < p).
Therefore, we have only to show that 7r = rl7r2 . rp.
From (2) we have that Si ! Sj if and only if

(Ylli . . . Ylkl; . . . ;ypli) . . . 2ypkpi)
= (Yllj2 ,** lklj; * Yplj2 ..* ,pk,j) e

This equation holds if and only if (yzli,*..** ,yk,) =
(Yllzji,- ,ylk,j) for all 1(1 < 1 < p), i.e., Si" Sj for all 1.
Hence we have that Si~Sj if and only if Si,' Sj for all
1(1< 1 < p). Therefore, 7r = 7r17r2 rp.
The converse can be proved similarly by Definition 1.

Q.E.D.
Definition 2: A sequential machine M is called

kl,k2,* **,kp-output-observable with respect to the output
function z1 X Z2 X ... X zp and a partition X if the follow-
ing conditions are.satisfied, where each ki is a nonnegative
integer.
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Condition 1: The knowledge of the present state of M
is sufficient to uniquely determine the succeeding output
sequence of length kj observed at the output function zj
for every j (j = 1,2, ... ,p).

Condition 2: Let ,uij be the output sequence of length k5
observed at zj when the initial state is Si. Then Si, Sj if
and only if (lAil, * , = (j,j, - ,,-,,j,) for all Si and
Si C S.
When ir is the zero partition, M is called output-ob-

servable.
For example, a sequential machine M1 shown in Table

I is 1-output-observable with respect to zi and 7r,=
{1,2;3,4,5}. A sequential machine M2 shown in Table III

is 1,2-output-observable with respect to zl X Z2 and the
zero partition, and thus M2 is output-observable.
Lemma 3: A sequential machine M is k1,k2, . ,kp-out-

put-observable with respect to the output function
Zl X Z2 X ... X Z, and a partition r if and only if there
exist p partitions 71r,r2.. ,7rp such that r= .2... irp
and for each i (i = 1,2,.. -,p) M is ki-output-observable
with respect to the output function zi and the partition
7ri where each ki is a nonnegative integer.

Proof: Suppose that M is k1,ks,2 ,k,-output-observ-
able with respect to z1 X Z2 X ... X zp and 7r. From Defi-
nition 2, the following conditions are satisfied.

Condition 1: The knowledge of the present state Si of
M is sufficient to uniquely determine the succeeding out-
put sequence lAij of length kj observed at zj for every
j (j = 1,2,..p).

Condition 2: Si- Si if and only if (Muil,**- ,ip) =
(AjI) * *,,jp) .

Define the partition 7r (1 < 1 < p) corresponding to the
relation '- defined as Si^-, Sj if and only if lAil = il,l. Then,
from this and (1), it is clear that M is kz-output-observable
with respect to 7r (1 < 1 < p). Therefore, we have only
to show that ir = 7r17r2 ..r1. From (2) we have that
Si,'- S if and only if (ij,.* *. ,,Uip) (uj,**.. Ujp), and this
equation holds if and only if Ail = 'j, for all 1(1 < 1 < p),
i.e., Si ,S for all 1. Hence we have that Si-Sj if and only
if Si;s S for all 1. Therefore, = 7172 7p.
The converse can be proved similarly by Definition 2.

Q.E.D.
Theorem 2: The necessary and sufficient condition for a

sequential machine M to be modified by adding a binary
output function z so that it will be k-output-observable
with respect to the output function z and a partition r is
that M is k-semi-FSR realizable with respect to Xr where
k is a positive integer.

Sufficiency: Suppose that M is k-semi-FSR realizable
with respect to xr. Let Y1, Y2, .*. , Yk be its state assignment
variables, and let Yi(t) be a value of Yi at time t. Then
from Definition 1, the following conditions are satisfied.

Condition 1: Y,(t) = Yj-,(t - 1) for 2 < j < k.
Condition 2: Si-r S, if and only if (yli,* ,yki) =

(Yl,... ,ykj) where (yli,.. ,yki) denotes a binary code of
the state assignment corresponding to state Si.

Define a binary output function z such that z (Si) = yki

TABLE III
MODIFIED MACHINE M8

P.S. N.S.* z1Z2
. .* x=O x-1

1 4, 01 2, 01

2 3, 00 2, 00
3 4, 10 3, 10

4 5, 10 5, 10

5 5, 11 1, 11

for each Si E S. Every length-k output sequence
ZtZ t+1 Zt+k_ observed at the output z starting at time
t is Yk(t) Y(t + 1) ... Yk(t+ k - 1). From (1) this
sequence equals Yk (t) Ykl (t) ... Y1 (t), which is a binary
code corresponding to state Si at time t. Hence, each
length-k output sequence Ai observed at the output z is
uniquely determined only by the initial state Si and
lii = yk . yli. From (2) we have that Si,"Sj if and only
if .Ai = i,j. Therefore, M is k-output-observable with
respect to z and 7r.

Necessity: Suppose that M has been modified by adding
a binary output function z so that it is k-output-observ-
able with respect to the output function z and 7r. Then
from Definition 2, the following conditions are satisfied.

Condition 1: The knowledge of the present state is
sufficient to uniquely determine the succeeding output
sequence of length k observed at the output function z.

Condition 2: Let lii be this output sequence when the
initial state is Si. Then S('Sj if and only if Aii = i,j.
When ,Ai = Z1Z2...Zk, let a state assignment be

(Yli,... ,yki) = (Zk,.} ,Zj) for state Si. If 3 (Si,Iq) = Sj
for some input I, then ,ij = Z2Z3... ZkZk+l where Zk+1 is
uniquely determined by Si and I, from (1). Hence, we
can define a feedback functionf such that f(Si,Iq) -Zk+l.
Since Ai = Z1Z2... Zk and i = Z2Z3... ZkZk±l for
a(Si,Iq) = Sj, we have Y (t) = Y I (t - 1) for 2 < 1 < k.
From (2) we have Si^,'Sj if and only if ,ui = l,j, and thus
(yli, ,yki) = (Yljy ,Ykj). Therefore M is k-semi-FSR
realizable with respect to 7r. Q.E.D.

Theorem 3: Let M be a sequential machine. Then the
following four conditions are equivalent.

Condition 1: There exist p binary output functions
z1, ... ,zp such that M is k1,k2,.-*,kp-output-observable
with respect to the output function zi X Z2 X XX zp and
a partition 7r.

Condition 2: There exist p binary output functions
Z1,Z2,... ,zp and p partitions 71,72,... ,irp such that M is
ki-output-observable with respect to zi and ri for 1 < i < p
and 7rrr2 ** *7P = 7r.

Condition 3: There exist p partitions 7r,,7r2, ,7rP such
that M is ki-semi-FSR realizable with respect to 7ri for
1 <i<pand7r7r2.. 7rp = 7r.

Condition 4: M is k1,k2, . ,kp-semi-FSR realizable with
respect to 7r.
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Proof: From Lemma 3, Conditions 1 and 2 are equiva-
lent. From Theorem 2, Conditions 2 and 3 are equivalent.
And it follows immediately from Lemma 2 that Condition
3 is equivalent to Condition 4. Q.E.D.

III. OUTPUT-OBSERVABLE
SEQUENTIAL MACHINES

In this section we show an algorithm for modifying a
given machine to an output-observable one by adding a
minimum number of extra outputs. For a given sequential
machine M with a binary output function z, we can find
a minimum partition ir and a minimum integer k such
that the machine M is k-output-observable with respect
to z and ir. This method is shown in the following.

Procedure A
Step 1: Set ir(0) = I and l = 1.
Step 2: For every state Si, test whether all the output

sequences of length 1 observed at the output function z
with the machine M initially in state Si are the same. If
"no" for some state Si, set r = 7r(l - 1) and k = 1 - 1,
and stop. If "yes" for all states, then define a relation r(j)
such that Si Sj if and only if ui(l) = ,uj(l) where
1A(1) is the output sequence of length l corresponding to
state Si.

Step 3: If ir(1) = 0, then set X = 0 and k - 1, and stop.
If r(1) =7r(1-1), then set 7r=r(l) and k = -1, and
stop. Otherwise, set 1 = 1 + 1 and go to Step 2.

Step 2 is a process to test if M is i-output-observable
with respect to the output function z and a partition ir(l).
If M is known not to be i-output-observable with respect
to z and ir(i) in Step 2, then the minimum partition is
7r (1 - 1). This process is continued until r(1) becomes
either 7r(1 - 1) or the zero position.

It is clear that 7r(i) < r(l- 1) for each 1 in Step 3.
Therefore, Procedure A terminates in a finite amount of
time, i.e., is an algorithm.
To prove that the partition obtained by means of

Procedure A is minimum, it will be sufficient to show that
wr(l) = 7r(l- 1) implies r (I + 1) = ir(l) for each 1.
Assume that ir(i) = 7r(1- 1) for some I in Step 3.

Then M is m-output-observable with respect to z and
xr(m) for all m(1 < m < 1). Since M is i-output-observ-
able with respect to z and 7r(l), we have that Sir(l)5
implies jAi(l) = A,u(l). Let MAi(1) = lAj(l) = ZjZ2... Z1.
Then all the output sequences of length 1 - 1 correspond-
ing to states a(Si,Ii) and (Sj,Ij) for all inputs 1i and Ij
are the same and can be denoted by Z2Z,3... z1. Therefore,
5(Si,IJ) 6i.1)5(Sj,Ij) for all inputs Ii and Ij.

Since ir(l) = 7r(1 - 1), S(Si,Ij) a7T 3(Sj,Ij) for all Ii
and I,, and thus all the output sequences of length 1
corresponding to states b(Siji) and b(Sj,Ij) are the same
and can be denoted by Z2Z3 ... ZZ+1. Therefore, all the
output sequences of length l + 1 corresponding to state
Si znd Sj are the same, i.e., ,ui(l + 1) = ,jj(l + 1) =
ZZ2.... ZzZz__. This implies S,; Sj. Hence, S. g S,

obvious that 7r(l + 1) < ir(l) for each 1 in Procedure A.
Therefore, 7r(l) = 7r(l + 1).
Suppose that, for a given sequential machine M, 7ri and

ki(l < i < p) have been obtained by means of Pro-
cedure A; then M is ki-output-observable with respect
to the output function zi and the partition 7ir for each
i(1 < i < p). If 7r1r2 * i7r, = 0, then M is output-observ-
able. If7r1j2 7r*, > 0, then we have the following theorem.

Theorem 4: The necessary and sufficient condition for a

sequential machine M (see Fig. 3) to be modified by
adding s binary functions W1,W2,.. w8 so that it will be
kj,k2j... ,kp,l1, ,l.-output-observable with respect to the
output function z1 X Z2 X X Zp X wi X ... X w. is that
there exist s partitions T1j,T2, * ,IT- such that M is li-semi-
FSR realizable with respect to Ti for each i(1 < i < s)
and 1... 7prT1r2.r. = 0 where each ki is a nonnegative
integer and each li is a positive integer.

Proof: This can be proved readily from Theorem 3 and
the fact that M is ki-output-observable with respect to
zi and 7ri for each i(l < i < p). Q.E.D.
From Lemma 1 and Theorem 4 we have the following

corollary.
Corollary 1: The necessary and sufficient condition

for a sequential machine M to be modified by adding s

binary output functions W1,W22,-..W,, so that it will be
k1,k2 ... ,kk,l1,l2,* * ,18-output-observable with respect to the
output function ZI X Z2 X ... X ZP X Wl X W2 X ... X W,
is that there exists s SRP's T1,T2, - *,r8 of length 11, * **,18,
respectively, such that 71r7r2 * * *TpT172 ..*T, = 0.

Corollary 1 shows that if we can find the least possible
number of SRP's T1,T2,.* ,T8 such that

VO12 * * * 7pT1T2 * * * T8 = 0,

then we can modify the machine M to an output-observ-
able one by adding a minimum number of extra outputs.
The problem of generating all the SRP's for a given
machine has been investigated by Nichols [16].
Suppose that we have obtained the least number of

SRP's T1,T2,*T satisfying the condition of Corol-
lary 1. Then we can construct binary output functions
wj(l < j < s) satisfying the condition of Corollary 1 as
follows. Let Yjl,,Y2,.**, Yjli be the state assignment
variables of the lj-stage shift register corresponding to
SRP rj (see Fig. 4), and let (y 1i,yj2,.* yiii) be a binary
code corresponding to state Si. Note that each state is
given a single coding. Define a binary output function wj
such that wj(Si) = yjzli for Si C S, in the same way as
shown in the proof of Theorem 2.
Summarizing this argument, we can present the follow-

ing procedure for modifying a given machine so that it
will be output-observable by adding a minimum number
of extra outputs.

Procedure B-Modification Algorithm
Step 1: Given a sequential machine M having binary

output functions Z1,Z2, - ,z, find a minimum partition 7r;
implies Si r'+l) Sj, i.e., 7r(1) < ir(1 + 1). Moreover, it is
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z1
Step 4: By adding output function Z2 such that Z2 Y2,

we can obtain the modified sequential machine M2 shown
in Table III which is 1,2-output-observable with respect
to Zl X Z2 and the zero partition.

p

Fig. 4. Illustration of Procedure B.

Step 2: Set s = 1.
Step 3: Test whether there exist s SRP's TIT2 ..T8

such that -127.2 7rpT1'r2 - 0. If "yes," then go to
Step 4. If "no," then set s-s + 1, and repeat Step 3.

Step 4: Let Y,i, Yj2,j -Yji be the state assignment
variables of the l-stage shift register corresponding to
SRP rj(l < j < s), and let (yjli, ,yjl,i) be a binary
code corresponding to state Si (see Fig. 4). Define binary
output functions wj(1 < j < s) such that wj(Si) = yj:ii
for Si E S.
Example 1: To illustrate Procedure B, consider a se-

quential machine M1 given by Table I which is not output-
observable. Let us modify M1 to an output-observable
machine by Procedure B. The determination of a mini-
mum number of additional output functions is shown
below, where each step is indicated by the corresponding
number.

Step 1: Applying Procedure A, we can obtain k- 1
andir,= {i,2; }.

Step 2: s = 1.
Step 3: Testing whether there exists an SRP T, such

that 7rlil = 0, we can find an SRP rn = {T;2,3;4;}. In-

deed, vrln = {1;,3j;4;j. {1,2;3,4,5} = = 0.

The transition graph of ri is shown in Fig. 1(a). This
transition graph is a subgraph of the Good diagram for a

two-stage shift register shown in Fig. 1(b). By giving a

unique coding to each state in accordance with the labeling
of the corresponding states in the Good diagram, we can

obtain a state assignment shown in Table II.

IV. FAULT DETECTION FOR OUTPUT-
OBSERVABLE SEQUENTIAL MACHINES

In this section we consider fault detection experiments
for k1,k2, * - *,kp-output-observable sequential machines.
Let M be the fault-free machine with the output function
Zi X Z2 X ... X zp and let M' be the tested (possibly faulty)
machine with the output function zl' X Z2' X.Xz. .
Assume that the class of allowable failures satisfies the
following conditions.

Condition 1: Any failure which occurs is assumed to
occur throughout the test.

Condition 2: A failure which increases the number of
states in the machine does not occur.

Condition 3: A faulty machine M' is still k1,k2,---,kp-
output-observable with respect to Zi' X Z2' X ... X zp,
and some partition 7r, i.e., the knowledge of the present
state of M' is sufficient to uniquely determine the succeed-
ing output sequence of length ki observed at the output
functionzifor all i(1 < i < p).

In Section II we have shown that k1,k2, ,kP-output-
observable sequential machines can be realized as binary
FSR's of the form shown in Fig. 2. For sequential machines
with shift registers, let us consider a fault that results
when one of the stages of any FSR is either stuck-at-i or
stuck-at-0. The output, then, at the last stage of the
faulty FSR will be a sequence of identical values. There-
fore, the present state of the faulty FSR is sufficient to
uniquely determine the succeeding output sequence (a
sequence of identical values) of length k where k is the
length of the fault-free FSR. Hence, this fault satisfies
the above fault assumption. Any stuck-at fault in the
combinational circuit is also included by the above fault
condition.
Under these assumptions, let us design a checking

sequence. Given a ki,k2, ,kp-output-observable sequen-
tial machine M, let w, be an input-output sequence that
passes through all the transitions of the state table of M,
and let W2 be an arbitrary input-output sequence of length
k where k = max {ki, -- ,kkp}. It will be proved in the fol-
lowing theorem that the input-output sequence (41W2,
called C-sequence, is a checking sequence.

Theorem 5: Let M be an output-observable sequential
machine. Then the sequential machine satisfying2 the
C-sequence of M is isomorphic to M.

Proof: Let M' = (S',I,Z,6',X') be a sequential ma-
chine satisfying the C-sequence of M. From the failure
assumption, M' is k, ... ,kp-output-observable with respect
to zl' X Z2' X ... X Z.p' and some partition 7r. Let St and

2 We say that a sequential machine satisfies an input-output
sequence if, applying the input sequence, the output sequence is
obtained.

Xi

Xq

WI

W S

Fig. 3. Illustration of Theorem 4.
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Se' be the states of M and M', respectively, at time t in
the C-sequence. Define a mapping f: S' -* S such that
f(SO') = St for each time t. We first show that this yields
a well-defined mapping.
Now suppose that St # Se2 at time ti and t2. This

implies that

zj(tj)zj(tj + 1) ...zi(t, + ki - 1)

9 Zi(t2)zi(t2 + 1)...zi(t2+ ki - 1)

for some i, since M is k1,k2, * * *,k -oiitput-observable with
respect to zi X Z2 X ... X z,, and th6 zero partition. Since
M' satisfies the C-sequence of M,

z (tt)zj')(tj+ 1) ...z('(tj + ki -1)

=zi(t-)zj(tj + l) ...z(tj + ki -1) for j = 1,2.

Therefore,

e z+/(t2)zi'(tt+ 1)....zi(t2+ ki - 1).

This implies St,'i1'St,', since M' is ki,k2,. . ,kp-output-
observable with respect to zl' X Z2' X* X zp' and ir. This
implies Stl' $ St2'. Hence, St, 0 St2 implies Stl' $ St2'.
This shows that f is well-defined.

Since the C-sequence passes through all the states of S,
the mapping f is a surjection. Morebver, from the failure
assumption (2), we have S' < I.S where S means
the number of states in S. Thus, f iO a bijection.

Let It and Zt be the input and output symbols, respec-
tively, at time t in the C-sequence. ;From the definition of
f, we have f(5'(St',Ij)) = f(Set+i') S+ =b-(St,IJ) =
b(f(St'),It),and X'(St',It) = Zt = X(St,It) = X(f(Se'),Ie)
for any time t.

This holds for all states and all input symbols of M,
since the C-sequence passes through all the transitions of
the state table of M. Hence, f is an isomorphism of M'
onto M. Q.E.D.
Theorem 5 implies that only the correctly operating

machine satisfies the C-sequence of M. However, the
converse is not always true, i.e., the correctly operating
machine does not always satisfy the C-sequence when the
machine under test is not initially in the starting state
of the C-sequence of M. So the machine under test should
be initially in the starting state of the C-sequence when
the C-sequence is to be applied. This can be done by
applying a homing sequence.3 For k1,k2, * * *,kp-output-
observable sequential machines, any input sequence of
length k (k = max {k1,k2, . ,kp}, ) is a homing sequence.
The entire checking experiment can be summarized as
follows.

Step 1: By applying an arbitrary input sequence X1 of
length k, determine the final state So.

3 An input sequence is said to be a homing sequence if the re-
sponse of M to its application uniquely determines the final state of
the machine independently of the initial state.
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Step 2: Construct an inpUt sequence X2 which passes
through all the transitions ofM initially in state So.

Step 3: Apply the input- sequence X2 followed by an
arbitrary input sequence X3 of length k (the C-sequence
of M), and observe the respnse. The machine under test
is correct if it responds correctly to the input sequence
X2X&3. Otherwise, the machinr is faulty.
Example 2: Consider machiine M2, given by Table III,

which is 1,2-outputiobserVable with respect to output
function Zi X Z2 and the ziro partition. By applying an
arbitrary input sequence of length k (k = max I 1,21 = 2)
and observing the output sequence of length 1 and 2 at
the output terminals z1 and Z2j respectively, we can estab-
lish the initial state and the final state. Suppose that the
machine is in the state 1, then the shortest input-output
sequence w, that passes through all the transitions of M2
is obtained as follows:

Input 0 0 0 1 1 1 0 1
State 1 4 5 5 1 2 2 3 3
Output Z2 1 0 1 1 1 0 0 0

z1 0 1 1 1 ,0 0 0 1

0 1
4 5
0 0
1 1 .

As the final state is 5, the following sequence is an
input-output sequence £2 of length 2 starting at state 5:

Input 0 0
State 5 5 5
Output Z2 1 1

Zi 1 1

Then a checking sequence for M2 is the following:

Input 0 0 0 1 1 1 0 1 0 1 0 0
State -1 4 5 5 1 2 2 3 3 4 5 5 5
Output Z2 1 0 1 1 1 0 0 0 0 0 1 1

Z10 11 1 000 11111.

The problem of obtaining the shortest input sequence
X2 in Step 2 can be redueed to the traveling salesman
problem. Consider a directed graph consisting of a finite
set V of vertices together with a collection U of ordered
pairs of vertices, called ar'e, in which associated with
each arc (vi,vj) is a tumber di, > 0 (which we shall call
the distance between vi and `3). Any sequence of vertices,
in which every vertex of the graph appears at least once
and the first and last vertices are identical, is called a
tour. A tour may be written as t = (v,v2,2. ,vp,v1). The
length of the tour, denoted by L(t), is the sum of the
arc lengths over the arcs included in the tour, i.e.,

L(t) = 2 dij.

The problem of finding the shortest tour is the well-known
traveling salesman problem [15].
As the application of the traveling salesman problem,

we have the following procedure for finding the shortest
input sequence which passes through all the transitions
in the given state diagram or the state graph.
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Step 1: Construct an interchange graph4 G of the given
state graph, and set dij = 1 for all arcs (vi,v,) in the
graph G.

Step 2: Find the shortest tour in the graph G by the
method for solving the traveling salesman problem, and
construct the input sequence starting from state So, which
corresponds to the tour.
Although the comparison of our method with the previ-

ous methods [1]-[8] is difficult because of the different
fault assumptions, we will show some advantages of our
method. Since a checking experiment must check all the
transitions of M, it must pass through at least all the
transitions. This follows from the fact that no checking
sequence can be shorter than the shortest input sequence
X2 which passes through all the transitions. Therefore
X2 < Lo where X2 is the length of the input sequence
X2 and Lo is the length of the minimum checking experi-
ment. Furthermore, Xi = Xa = k < n where n is the
number of states of M. Consequently, XxX2X3 =
2k + X2 < 2n + Lo, i.e., the length of the checking
experiments for the n-state output-observable sequential
machines is at most 2n + Lo. These are nearly minimum
checking experiments, and hence are much shorter than
those described in previous work.

Since the checking experiments presented here have
only to pass through all the transitions in order to check
all the transitions, the procedure is much simpler than
the previous method [1]-[8]. However, when one tries
to obtain the shortest input sequence which passes through
all the transitions, one must apply such a method as the
traveling salesman problem, so the amount of computation
may become huge, in general.

V. CONCLUSION
In this paper we have introduced output-observable

sequential machines as the easily testable sequential
machines, and have described a procedure for the modifi-
cation of a given sequential machine to an output-ob-
servable one by adding a minimum number of extra out-
puts. This procedure is mainly based upon the fact that
the output observability of a sequential machine is equiva-
lent to the semi-FSR realizability of it. We have also
presented a procedure for the organization of simple,
short, and efficient checking experiments for output-
observable machines. For such machines, the checking
experiments have only to pass through all the transitions
of the given state table. In this sense, the output-observ-
able machines have the advantage of being easy to test.

ACKNOWLEDGMENT
The authors wish to acknowledge the support and en-

couragement of Prof. H. Ozaki of Osaka University, Osaka,
Japan.

I In the interchange graph G2 of the state graph G,, the arcs of
G, are the vertices and the arc (ui,uj) exists in G2 if and only if in
graph G, the terminal vertex of the arc ui coincides with the initial
vertex of the arc ux.
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