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Abstract. We show that the test generation problem for all single stuck-at faults in sequential circuits with inter-
nally balanced structures can be reduced into the test generation problem for single stuck-at faults in combinational
circuits. In our previous work, we introduced internally balanced structures as a class of sequential circuits with the
combinational test generation complexity. However, single stuck-at faults on some primary inputs, called separable
primary inputs, corresponded to multiple stuck-at faults in a transformed combinational circuit. In this paper, we
resolve this problem. We show how to generate a test sequence and identify undetectability for single stuck-at faults
on separable primary inputs.
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1. Introduction

Test generation for sequential circuits is, in general,
a difficult and intractable task which may be unsolv-
able within reasonable amount of time for a large-scale
circuit [1, 5]. When all the flip-flops of a circuit are
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replaced with scan flip-flops ( full scan design), all the
scan flip-flops are treated as equivalents to external I/O
terminals and hence the test generation can be per-
formed for the remaining circuit (called the “kernel
circuit”) with the exclusion of all flip-flops, i.e., for
the combinational part of the sequential circuit. There-
fore, the full scan design method can reduce the test
generation problem for a sequential circuit to the test
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generation problem for a combinational circuit. We
shall consider only stuck-at faults in this paper, and
refer to stuck-at faults to hereafter just as faults.

To reduce area and delay overhead while preserv-
ing the above good feature of the full scan design, a
class of sequential circuits that allows test generation
with combinational test generation algorithms has been
investigated [2, 6–9]. Balanced structures [8] are one
class of circuit structures with this feature. A sequen-
tial circuit is a balanced structure if it is acyclic and all
paths between any pair of primary input and primary
output have the same number of flip-flops. For a bal-
anced sequential circuit, test generation problem can
be reduced into the test generation problem for a com-
binational circuit obtained by replacing all flip-flops
with wires. In this transformation, all single faults on a
balanced circuit correspond to single faults on the trans-
formed combinational circuit. In [2], a sub-class of bal-
anced structure called strongly balanced structures is
introduced to reduce test application time. In [7], a bal-
anced structure is considered at register-transfer level.
At this level, the functional behavior of the combina-
tional logic such as “switch” can be considered, and
switched balanced structures are introduced as a larger
class of the balanced structures. For an acyclic struc-
ture, test generation method that uses combinational
test generation algorithm for a time expansion model
is proposed [9]. Although this model allows test gen-
eration with combinational test generation algorithm,
it includes multiple copies of the combinational blocks
of the original sequential circuits. Therefore, the trans-
formed circuits is much larger than the original circuit,
and moreover, a single fault in the original circuit may
correspond to a multiple fault in the transformed cir-
cuit. In general, the single stuck-at faults can be used
to model other type of faults (see [1], pp.111, 112),
and hence multiple stuck-at faults can be modeled by
single stuck-at faults. However, the approach requires
additional circuitry for each fault to the circuit, and
therefore, the size of the circuit under test is enlarged.

In [6], we introduced a new class of sequential cir-
cuits with combinational test generation complexity
called internally balanced structure. This class is larger
than the class of balanced structures. When considering
realization possibility of finite state machines (FSMs),
it is shown that {FSMs which can be realized as a se-
quential circuit of acyclic structure} = {FSMs which
can be realized as a sequential circuit of internally bal-
anced structure} ⊃ {FSMs which can be realized as a
sequential circuit of balanced structure}. We reduced

Fig. 1. Correspondence of faults: (a) A
separable primary input in S, (b) separated
primary inputs in C .

the test generation problem for faults in a circuit S
with an internally balanced structure into the test gen-
eration problem for faults in a combinational circuit
C where some primary inputs with fanout branches in
S are separated into two or more primary inputs ac-
cording to some partition of the fanout branches. We
call such primary inputs in S separable primary inputs.
Any part in S except for the separable primary inputs
is not replicated in C . Therefore, each single fault on a
separable primary input in S corresponds to a multiple
fault on the separated primary inputs in C , while the
other single faults in S correspond to single faults in C .
Fig. 1 shows an example. The original circuits S has
a separable primary input x (Fig. 1(a)) separated into
three primary inputs x1, x2, x3 in the transformed cir-
cuit C (Fig. 1(b)). In such transformation, the fault on
x in S corresponds to a multiple fault on x1, x2, x3 in C .

In this paper, we desire to generate test sequences for
single faults on the separable primary inputs without
any modification of S or C . The separable primary in-
puts have fanout branches, and we consider the relation
between a multiple faults on all the fanout branches
and single faults on the fanout branches. There are
many works on fanout faults or multiple faults includ-
ing [3, 4, 10].

First, we show that test sequences corresponding to
test patterns for single faults on separated primary in-
puts do not always detect faults on the separable pri-
mary inputs. This means that even if we can find test
patterns for all detectable faults on the primary inputs
in C separated from a primary input x in S, test se-
quences corresponding to these test patterns may not
detect the fault on x though it is detectable.

Next, we present how to find test sequences for sin-
gle faults on the separable primary inputs. We show
that we can get a test sequence for a single stuck-at-v
fault on a separable primary input directly from a
test pattern for a single stuck-at-v fault on one of the
separated primary inputs. Finally, we show that a single
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stuck-at-v fault on a separable primary input is unde-
tectable if all single stuck-at-v faults on the separated
primary inputs are undetectable. In this way, we re-
duce the test generation problem for single faults in
circuits with internally balanced structures into the test
generation problem for single faults in combinational
circuits. Moreover, the size of the transformed combi-
national circuit is not larger than the original sequential
circuit.

The rest of this paper is organized as follows. In
Section 2, the internally balanced structure and some
notations are provided. We show that faults on the sep-
arable primary inputs may not be detected by test se-
quences for the separated primary inputs, and show
how to generate complete test sequences and identify
undetectable faults in Section 3. Section 4 concludes
the paper.

2. Preliminaries

First, we briefly define the internally balanced structure
[6]. For simplicity, we shall limit flip-flops (referred to
hereafter as FFs) to DFFs. Another kind of FFs can be
handled similarly.

The number of FFs included in a path is called a se-
quential depth of the path. The largest sequential depth
over the paths from the primary inputs of a sequential
circuit to a primary output is regarded as a sequen-
tial depth of the primary output. The largest sequential
depth over the primary outputs is regarded as a sequen-
tial depth of the sequential circuit. In this paper, we
treat only acyclic sequential circuits, and therefore, we
can find the sequential depth of any primary output and
the sequential depth of the sequential circuit. Suppose
x is a primary input, and yi and y j are fanout branches
of x . If there is no primary output that can be reached
from yi and y j over equal depth paths, then yi and y j

are called separable.
A partition � on a set A is a collection of disjoint

subsets whose set union is A. The disjoint subsets are
called the blocks of �. A partition �1 on A is said to
be “smaller than or equal to” �2 on A if and only if
each pair of elements which are in a common block of
�1 are also in a common block of �2.

Extended Combinational Transformation: A trans-
formation based on the following two operations
with a sequential circuit S of acyclic structure
is called an extended combinational transformation
(C∗-transformation), and the resulting combinational
circuit is denoted by C∗(S).

Fig. 2. Primary input separation.

Fig. 3. Deletion of flip-flops.

1. Separation of primary inputs: For each primary
input x with fanout branches, separate it as fol-
lows. Let Y denote a set of the fanout branches
of a primary input. Let us obtain the smallest
partition � of Y which satisfies the following state-
ment: If branches ya and yb belong to differ-
ent blocks Y (i), Y ( j) of partition �(ya ∈ Y (i),
yb ∈ Y ( j), Y (i) 	= Y ( j)) then ya and yb are separa-
ble. As shown in Fig. 2, each partitioned block Y (i)
is provided with a new primary input xi separated
from the original primary input x .

2. C-transformation: Replace each FF by a wire (for
the case of negative FF output, a NOT gate is added,
see Fig. 3).

Note that we can uniquely obtain the smallest par-
tition � for each primary input as connected compo-
nents of a graph such that the vertices are the fanout
branches and an edge exists iff two fanout branches
are not separable. In this way, for a given acyclic cir-
cuit S, the resulting circuit from the operation (1) of the
C∗-transformation and the resulting circuit C∗(S) from
the C∗-transformation are uniquely determined.

Balanced Structure [6]: For any pair of primary input
and primary output in an acyclic circuit S, if the sequen-
tial depths of all paths connecting these two points are
equal, then S is regarded as a balanced structure.

Internally Balanced Structure [4]: An acyclic circuit S
is regarded as an internally balanced structure if
the circuit resulting from the operation (1) of the
C∗-transformation on S is a balanced structure.

The circuit shown in Fig. 4(a) is an internally bal-
anced structure but is not a balanced structure where
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Fig. 4. (a) Example of internally balanced struc-
ture, (b) Circuit resulting from the operation (1) of
the C∗-transformation.

A, B, C, D are blocks of combinational logics and
R1, R2, R3 are registers (collections of FFs). Fig. 4(b)
shows the circuit resulting from the operation (1) of
the C∗-transformation on the circuit in Fig. 4(a), where
a primary input x1 is separated into two primary in-
puts x1,1 and x1,2, and the circuit in Fig. 4(b) is a
balanced structure. Therefore, the circuit in Fig. 4(a)
is an internally balanced structure. Clearly, if the cir-
cuit is balanced structure then it is also internally bal-
anced structure. The relation among the structures is as
follows: {sequential circuits with acyclic structure} ⊃
{sequential circuits with internally balanced structure}
⊃ {sequential circuits with balanced structure}.

Let S be a circuit with an internally balanced struc-
ture. We consider a transformation of a test pattern for
C∗(S) into a test sequence T for S. First, we define a
transformation of a test sequence T for S into a test
pattern for C∗(S). The transformaion of a test pattern
into a test sequence is defined as the reverse function.

Let z be a primary output in S such that T propagates
a fault effect to a primary output z in time frame τ .
Let Tc(T, S, z, τ ) be a test pattern for C∗(S) which is
transformed from a test sequence T for S as follows.
Assume that the length of T and the time frame τ are
both more than the sequential depth of z. If there is no
path from a primary input x to z in C∗(S), we consider
the value of x as don’t care, otherwise, the following
two cases exist.

1. Case where x is a primary input in S and is not
separated in C∗(S): The sequential depth d of any

path from x to z is uniquely determined. The value
of x in Tc(T, S, z, τ ) is the value of x of T in time
frame τ − d.

2. Case where x is a primary input in S and is sep-
arated in C∗(S): Assume that the primary input
x in S is separated to obtain the primary inputs
x1, x2, . . . , xn in C∗(S). Since S is an internally bal-
anced structure, any path from x j ( j = 1, 2, . . . , n)
to z has unique sequential depth d j . The value of
x j ( j = 1, 2, . . . , n) of test pattern Tc(T, S, z, τ )

is the value of x of T in time frames τ − d j

( j = 1, 2, . . . , n).

Now we consider the reverse transformation. Let t
be a test pattern for C∗(S) that propagates a fault ef-
fect to a primary output z, and let d be the sequential
depth of z. We can define a test sequence that prop-
agates a fault effect in time frame d + 1. Since all
the sequential depths d j ( j = 1, 2, . . . , n) in the sec-
ond case are different from each other, the values of x j

( j = 1, 2, . . . , n) correspond into the values of x of the
test sequence in distinct time frames. Therefore, we can
define a test sequence T from a test pattern t satisfying
t = Tc(T, S, z, d + 1).

Example 1. Fig. 5(a) shows a sequential circuit S with
an internally balanced structure where a primary in-
put x2 is separable. We can obtain a circuit C∗(S)

in Fig. 5(b) where x2 is separated into x2,1 and x2,2.
For S, input sequence T = (000, 101) is a test se-
quence detecting the stuck-at-1 fault on y1 which

Fig. 5. (a) Internally balanced structure
S, (b) Combinational equivalent C∗(S).
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propagates a fault effect to a primary output z1 in time
frame 2. This sequence is transformed to a test pat-
tern t = Tc(T, S, z1, 2) = ((x1 = 1, x2,1 = 0, x2,2 = 0,

x3 = 1) for the stuck-at-1 fault on x2,1 in C∗(S).
On the other hand, any test sequence T satisfying
(1001) = Tc(T, S, z1, 2) detects the stuck-at-1 fault on
y1 in S. Since the sequential depth of a path from x2,1

to z1 is 1 and the sequential depth of the other path to
z1 are 0, the value of x2,1 corresponds to the value of x2

in time frame 2−1 = 1 and the other values corespond
to the values in time frame 2 − 0 = 2. Therefore an
input sequence (−0−, 101) is such a sequence where
‘−’ means don’t care.

Possibility of Test Generation with Combinational
Test Generation Complexity

In [6], we defined the possibility of test generation with
combinational test generation complexity as follows:
If the test generation problem for a sequential circuit
S can be reduced to the test generation problem of
C∗-transformed combinational circuit C∗(S), S allows
test generation with combinational test generation
complexity. Such a sequential circuits is called a
sequential circuit allowing test generation with com-
binational test generation complexity, or, simply, a
sequential circuit with combinational test generation
complexity. We showed that the test generation prob-
lem for a sequential circuits S with internally balanced
structure can be reduced to the test generation problem
for a combinational circuit C∗(S).

This is the extension of the definiton of the possibil-
ity of test generation with combinational test genera-
tion complexity in [8], where they use C-transformaion
as the transformaiton to combinational circuits. We ex-
tended the defintioin by introducing C∗-transformaion.
In [6], we further extended the definition to more gen-
eral form, where we require the time complexities of the
transfromation and test generation of the transfromed
combinational circuit are less than the time complexity
of the test generation of the original sequential circuit.

Theorem 1 ([4]). If a sequential circuit S is an inter-
nally balanced structure, S allows test generation with
combinational test generation complexity.

However, each fault on a separable primary input x in
S corresponds to a multiple fault on all the separated
primary inputs of x in C∗(S). On the other hand, any
other single fault f in S corresponds to a single fault f ′

on the same line in C∗(S), and a test pattern t detects f ′

iff any test sequence satisfying t = Tc(T, S, z, d + 1)

detects f in S where t propagates a fault effect to a
primary output z with a sequential depth d.

3. Detection of Separable Primary Input Faults

In this section, we consider whether the test generation
problem for single faults in a sequential circuit S with
internally balanced structures can be reduced to the test
generation problem for single faults in a combinational
circuit C∗(S). Since the test generation problem for all
single faults except on separable primary inputs in S
can be reduced into the test generation problem for
single faults in C∗(S), we only consider single faults
on separable primary inputs.

We consider whether the test generation problem for
a single fault on a separable primary input x in S can
be reduced into the test generation problem for single
faults on primary inputs separated from x in C∗(S).
First, we show that test sequences corresponding to test
patterns for single faults on separated primary inputs
do not always detect faults on the separable primary
inputs.

Theorem 2. Let S be a sequential circuit S with inter-
nally balanced structure. The following statement does
not hold: For any primary input x in S which is sepa-
rated into x1, xi , . . . , xn in C∗(S), if {t1, t2, . . . , tk} 	=
∅ is a complete test set for the single stuck-at-v faults
on x1, xi , . . . , xn in C∗(S) then there exists a test pat-
tern t ∈ {t1, t2, . . . , tk} such that any test sequences T
satisfying t = Tc(T, S, z, d + 1) detects a stuck-at-v
fault on x in S where t propagates a fault effect to a
primary output z and d is a sequential depth of z in S.

Proof: Consider the circuits in Fig. 5 again. To prove
the theorem, it is sufficient to show that, for each x2, j

( j = 1, 2), there is a test pattern t such that it detects the
single stuck-at-v fault on x2, j and that some sequence T
satisfying t = Tc(T, S, z, d + 1) cannot detect the
stuck-at-v fault on x2, where t propagates a fault effect
to a primary output z and d is the sequential depth of z
in S.

Now, we show such test patterns for stuck-at-1 faults
on x2,1 and x2,2. The test pattern t = (x1 = 1, x2,1 = 0,

x2,2 = 0, x3 = 1) can detect both stuck-at-1 faults on
x2,1 and x2,2 in C∗(S). It propagates D to z1 for the
fault on x2,1 and D̄ to z2 for the fault on x2,2. Both
sequential depths of z1 and z2 are 1, and the sequence
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T = (000, 101) satisfies t = Tc(T, S, z1, 2) and t =
Tc(T, S, z2, 2) but does not detect the stuck-at-1 fault
on x2. �

Although Theorem 2 means that we cannot find
a test sequence for a fault on a separable primary
input directly from test patterns for separated pri-
mary inputs, we can find such a test sequence which
detects a fault on a separable primary input. For
an input pattern t = (v1, v2, . . . , vm) for a combina-
tional circuit with primary inputs x1, x2, . . . , xm , let
t[xi := wi , x j := w j , . . .] denote the input pattern ob-
tained from replacing the values of xi , x j , . . . with the
values wi , w j , . . ..

In [6], it is shown that a single stuck-at-v fault on
a separable primary input x in a sequential circuit S
with internally balanced structure is detectable iff the
multiple stuck-at-v fault on all the separated primary
inputs in C∗(S) is detectable. The following theorems
consider a multiple fault on some of primary inputs in
a combinational circuit.

Theorem 3. Let x1, x2, . . . , xm be a subset of pri-
mary inputs in a combinational circuit C. For any
j ∈ {1, 2, . . . , m}, if t is a test pattern for a single stuck-
at-v fault f j on some x j in C, then a multiple stuck-
at-v fault f on x1, x2, . . . , xn can be detected by t or
t[x j := v].

Proof: Let z be a primary output to which t propa-
gates a fault effect, and let F(x1, x2, . . . , xn, X) be a
function of z where X is a list of primary inputs other
than x1, x2, . . . , xn . Since t detects f j , the value of x j

in t must be v̄ and F(t) 	= F(t[x j := v]) holds. Let Ff

denote the value of z in C with the fault f .

1. Case of F(t) 	= F(t[x1 := v, . . . , xn := v]): In this
case, Ff (t) = F(t[x1 := v, . . . , xn := v]) 	=F(t)
holds. Therefore, f can be detected by t .

2. Case of F(t) = F(t[x1 := v, . . . , xn := v]):
Ff (t[x j := v]) = F(t[x1 := v, . . . , xn := v]) =
F(t) 	= F(t[x j := v]). Therefore, f can be detected
by t[x j := v]. �

Let TS,x,v (TC,x,v) denote a set of test sequences (test
patterns) that detect a stuck-at-v on a line x in a se-
quential circuit S (a combinational circuit C).

Theorem 4. Let x1, x2, . . . , xm be primary inputs in a
combinational circuit C. If

⋃
1≤ j≤m TC,x j ,v = ∅ holds

then the multiple stuck-at-v fault f on x1, x2, . . . , xm

in C is undetectable.

Proof: We prove the theorem by contradiction. As-
sume

⋃
1≤ j≤m TC,x j ,v = ∅ but there is a test pattern t

that detects f . Let z be a primary output to which t
propagates a fault effect. Let F be a function of z in
C . Since there is no test pattern for stuck-at-v fault on
any x j , F(t ′) = F(t ′[x j := 0]) = F(t ′[x j := 1]) =
F(t ′[x j := v]) holds for any x j and any input pattern t ′.

Since t is a test pattern for f , F(t) 	= F(t[x1 :=
v, . . . , xn := v]) holds. However, the following also
holds.

F(t)

= F(t[x1 := v])

= F(t[x1 := v, x2 := v])

· · ·
= F(t[x1 := v, . . . , xn := v])

The contradiction occurs. �

In [6], it is shown that a single stuck-at-v fault on
x in S is detectable iff the multiple stuck-at-v fault
on x1, x2, . . . , xn in C∗(S) is detectable. Therefore,
Theorems 3 and 4 imply the following corollaries.

Corollary 5. Let S be a sequential circuit with in-
ternally balanced structure, where a primary input x
in S is separated into x1, x2, . . . , xn in C∗(S). If t is
a test pattern for a single stuck-at-v fault f j on some
x j in C∗(S)( j = 1, 2, . . . , n), then a single stuck-at-v
fault f on x in S can be detected by any T satisfy-
ing t = Tc(T, S, z, d) or any T ′ satisfying t[x j := v] =
Tc(T ′, S, z, d) where z is the primary output to which t
propagates a fault effect and d is the sequential depth
of z in S.

Corollary 5 implies that
⋃

1≤ j≤n TC∗(S),x j ,v 	= ∅ ⇒
TS,x,v 	= ∅ holds.

Corollary 6. Let S be a circuit with an inter-
nally balanced structure, where a primary input
x is separated into x1, x2, . . . , xn in C∗(S). Then,⋃

1≤ j≤n TC∗(S),x j ,v = ∅ ⇒ TS,x,v = ∅ holds.

Example 2. Now, we consider the sequential circuit
S in Fig. 5(a) again. t = (x1 = 1, x2,1 = 0, x2,2 = 0,

x3 = 1) can detect the stuck-at-1 fault on x2,1 in C∗(S).
The test pattern t propagates D to z1 which sequen-
tial depth is 1. However, some sequence T satisfying
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t = Tc(T, S, z1, 2) (T = 000, 101 for example) does
not detect the stuck-at-1 fault on x2. In this case, any
sequence T ′ satisfying t[x2,1 := 1] = Tc(T ′, S, z1, 2),
i.e., T ′ = (−1−, 101), can detect the stuck-at-1 fault
on x2.

Using the result in [6] and Corollaries 5 and 6, we can
generate a test sequence for single faults in an internally
balanced circuit S using a test generation algorithm
for single faults in a combinational circuit C∗(S). The
procedure to generate a test sequence is as follows.

Test Generation Procedure

1. Transform S into a combinational circuit C∗(S).
2. Generate test patterns for all single faults in C∗(S)

using a combinational test generation algorithm.
3. For all faults except on the separated primary in-

puts in C . Transform each test pattern t into a test
sequence T satisfying t = Tc(T, S, z, d) where t
propagates a fault effect to a primary output z and
d is the sequential depth of z in S. If a fault f in
C∗(S) is identified as undetectable, identify the cor-
responding fault in S as undetectable. Concatenate
all obtained test sequences. Let T be a concatenated
sequence.

4. For each stuck-at-v fault on each separable pri-
mary input x in S, if some primary input x j sep-
arated from x has a test pattern t for a stuck-at-v
fault, then append a test sequence T satisfying
t = Tc(T, S, z, d) and a test sequence T ′ satisfying
t[x j := v] = Tc(T ′, S, z, d) to T where z is the
primary output to which t propagates a fault effect
and d is the sequential depth of z in S. Otherwise,
identify a stuck-at-v fault on x as undetectable.

If a complete test generation algorithm for combi-
national circuits is available, the above procedure
provides complete test sequence T for the internally
balanced circuit S. Note that the 4th step in the above
procedure may add two test sequences for one single
fault. Theorem 3 guarantees that one of the two se-
quences can detect the fault. Therefore, we can delete
one of them from T using a fault simulator to reduce
the length of a test sequence.

4. Conclusion

In this paper, we considered the test generation problem
for the single stuck-at-v faults on the separable primary

inputs of a sequential circuit with an internally balanced
structure. We first showed that test sequences corre-
sponding to test patterns for single stuck-at-v faults on
the separated primary inputs x1, x2, . . . xn cannot al-
ways detect the single stuck-at-v fault on x . However,
we showed that the single stuck-at-v fault on x can be
detected if one of the stuck-at-v faults on the separated
primary inputs is detected. We presented how to find a
test sequence for the fault on x using a test pattern for
any of the separated primary inputs. We also showed
that if any single stuck-at-v fault on the separated pri-
mary inputs is undetectable then the single stuck-at-v
fault on x is also undetectable. As a result, the test gen-
eration problem for single faults on separable primary
inputs in a sequential circuit with an internally balanced
structure can be reduced to the test generation problem
for single faults in a combinational circuit.

In [6], it is shown that the test generation problem
for single faults on all lines except for the separable pri-
mary inputs of a sequential circuit with an internally
balanced structure can be reduced to the test genera-
tion problem for single faults in a combinational cir-
cuit. Moreover, the proposed transformation obtains a
combinational circuit which is not larger than the orig-
inal sequential circuit. From the result in this paper,
we conclude that the test generation problem for all
single faults in a sequential circuit with an internally
balanced structure can be reduced to the test genera-
tion problem for single faults in a combinational circuit
that is not larger than the original sequential circuit. We
proposed the test generation procedure for internally
balanced circuits. This procedure guarantees 100%
fault efficiency if a complete test generation algorithm
for single stuck-at faults in combinational circuits is
available.
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