
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002
975

PAPER

Design for Hierarchical Two-Pattern Testability of

Data Paths

Md. Altaf-Ul-AMIN†, Nonmember, Satoshi OHTAKE†, Regular Member,
and Hideo FUJIWARA†, Fellow

SUMMARY This paper introduces the concept of hierarchi-
cal testability of data paths for delay faults. A definition of hier-
archically two-pattern testable (HTPT) data path is developed.
Also, a design for testability (DFT) method is presented to aug-
ment a data path to become an HTPT one. The DFT method
incorporates a graph-based analysis of an HTPT data path and
makes use of some graph algorithms. The proposed method can
provide similar advantages to the enhanced scan approach at a
much lower hardware overhead cost.
key words: design for testability, delay testing, hierarchical
testability, two-pattern testability

1. Introduction

Two-pattern tests are necessary to detect delay defects
in a circuit. The importance of detecting delay defects
has soared in recent years to keep pace with the rapid
increase in the speed of integrated circuits. A straight-
forward solution to two-pattern testability is the en-
hanced scan [1],[2]. But this incorporates very high
area overhead and test application time. In the present
work, we introduce hierarchical two-pattern testability
of data paths. Hierarchical testability targeting stuck-
at faults has been explored in a number of research
works [3],[4]. These works address testability at reg-
ister transfer level (RTL) and thus exploit the advan-
tages of higher-level design hierarchy where the number
of primitive elements in the design is greatly reduced.
In these works it is shown that hierarchical testabil-
ity is better than the gate-level based full-scan method
in the context of test generation time, test application
time and sometimes even area overhead. Our approach
is hierarchical testability for delay faults. The design
hierarchy we consider is RTL. At RTL a circuit can be
divided into two parts: a controller and a data path. In
this paper, we consider the data path only. We assume
that all control inputs and status outputs of a data
path are directly controllable and directly observable,
respectively.

There are a number of delay fault models. Among
these, the path delay fault model is more general and
can overcome the limitations of other models. We de-
velop HTPT data path targeting all detectable path de-

Manuscript received October 2, 2001.
Manuscript revised January 21, 2002.

†The authors are with the Graduate School of Infor-
mation Science, Nara Institute of Science and Technology
(NAIST), Ikoma-shi, 630–0101 Japan.

lay faults. However, in the present work, we do not con-
sider paths involving control inputs. The advantages of
an HTPT data path are (i) the data path can be tested
using any delay fault model, (ii) combinational ATPG
can be used and (iii) the same fault coverage can be
obtained as with the enhanced scan approach.

Analyzing the functionality of a circuit, some paths
in the data path might be proven to be multiple clock
tolerant paths. Delay in a multiple clock tolerant path
is most likely to be caught by test for transition faults
and need not be targeted for delay testing [5]. In this
paper we developed our approach assuming that all
paths of unity sequential depth are single clock toler-
ant. However, if some multiple clock tolerant paths
exist and are discarded from the target fault list, our
algorithm is still applicable and may result in less hard-
ware overhead. The rest of our paper is organized as
follows. Section 2 discusses the RTL path and its prop-
erties. Section 3 presents the definition and a graph
based analysis of the HTPT data path. Section 4 ex-
plains our DFT method. Section 5 shows the experi-
mental results. Section 6 concludes this paper.

2. The Concept of RTL Paths

A data path consists of hardware elements and buses.
We assume that the buses in a data path are of the
same bit width. However, we will relax this assump-
tion afterwards. The RTL paths are the paths in an
RTL circuit of a data path that, (i) start at a primary
input (PI) and end at a register or (ii) start at a register
and end at another/same (in case of feedback) register
or (iii) start at a register and end at a primary output
(PO) or (iv) start at a PI and end at a PO. It is ob-
vious that the sequential depth of an RTL path is one.
“PI1-R1” and “R1-ADD-MUX6-R4” are two examples
of RTL paths in the arbitrary and simple data path of
Fig. 1. We exclude the paths that start at a constant
register. The reader may verify that the data path of
Fig. 1 has total eighteen RTL paths.

In the lower hierarchy, each RTL path consists of a
number of 1-bit wide paths. These individual 1-bit wide
paths may be classified as robust, non-robust, func-
tional sensitizable and functional unsensitizable paths.
To guarantee the timing performance, it is necessary to
test the robust, non-robust and functional sensitizable

976
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002

Fig. 1 An arbitrary data path.

(FS) paths [6]. To test a robust path, it is possible to
find two vectors (a vector pair) that differ from each
other by only at single bit [7]. An FS path needs to be
tested in a group simultaneously with one or more other
FS paths. Hence the testing of a group of FS paths re-
quires two vectors, which may differ from each other at
multiple bits [6]. From now on the testing of an RTL
path will mean the testing of the robust, non-robust
and functional sensitizable paths in it.

Path delay fault testing requires launching a tran-
sition at the start of a path by applying a pair of vec-
tors, propagating the transition along the path and al-
lowing fault effect observation from the end of the path
[6]. However, many of the RTL paths in the data path
neither start at a PI nor end at a PO. Therefore, some
paths are necessary to ensure the flow of test data (test
vectors and test responses) from PIs to appropriate reg-
isters and from appropriate registers to POs. Paths
used for the flow of test vectors are referred to as control
paths and paths used for test responses are referred to
as observation paths. Any logic value can be propagated
along the control paths and the observation paths. An
RTL path may cross one or more multiplexers (MUXs)
and operational modules. If an input of a MUX or an
operational module is on an RTL path then this input
is an on-input. Other input/inputs, which are not on
the path, are called off-inputs.

2.1 Paths through a MUX

In a data path, MUXs are very common elements and
are used as interconnecting units. Let us consider a
2 to 1 MUX as shown in Fig. 2. Both A and B are
n-bit wide. C is the control input. If C selects A
then, (i) propagation of signals from A (A1, . . . ,An) to
O (O1, . . . ,On) is robust (off-inputs remain stable at
non-controlling value) and independent of the signals
at B and (ii) there is no merging gate among the paths
(A1 to O1), (A2 to O2), . . . , (An to On) i.e. there are
only n mutually independent (1-bit wide) paths from

Fig. 2 n-bit wide 2 to 1 MUX.

A to O. The case for the paths from B to O is sim-
ilar. Therefore, while testing any RTL path crossing
one or more MUXs the select input/inputs should se-
lect the on-input/inputs of the MUX/MUXs and the
off-input/inputs of the MUX/MUXs can be don’t care.
For example, to test the path “PI2-MUX1-R2” (Fig. 1),
two-pattern vectors should be applied at PI2 and test
responses should be captured at R2. The off-input of
MUX1 may be don’t care.

2.2 Paths through an Operational Module

Many RTL paths cross not only MUXs but also oper-
ational modules. In the following example, we discuss
such a path.

Example 1: The path “R1-MUX3-MUX5-MULT-
R5” in Fig. 1 crosses the operational module MULT.
The segment “R1-MUX3-MUX5-” of this path is like
a wire in a sense that the signal values at R1 appear
unchanged at the output of the MUX5 if the control
inputs of the MUXs select the on-inputs. Again the
segment “-R5” on the output side of MULT is obvi-
ously like a wire. The core segment of this path is the
part of the path inside the MULT. In other words the
test vector set required to test the part of the path in-
side the MULT is the same as to test the whole path
“R1-MUX3-MUX5-MULT-R5.” These test vectors can
be generated by separately considering the gate level
circuit structure of the MULT. Obviously the bit width
of these test vectors spans both inputs of the MULT.
Suppose bits of the test vectors to be applied to the off-
input of the MULT are not all don’t cares. Hence to
test the path “R1-MUX3-MUX5-MULT-R5,” test vec-
tors should be applied not only at R1 but also at the
off-input of the MULT. Test vectors can be applied at
the off-input of the MULT from register R2. Therefore,
we say that the RTL path “R1-MUX3-MUX5-MULT-
R5” is an HTPT path if, (i) there exist two control
paths from PI/PIs to R1 and R2 that support the ap-
plication of two-pattern vectors and (ii) there exists an
observation path to propagate the test responses from
R5 to a PO.

In Fig. 1, we can see that disjoint control paths
“PI1-R1” and “PI2-MUX1-R2” are sufficient to apply

AMIN et al.: DESIGN FOR HIERARCHICAL TWO-PATTERN TESTABILITY OF DATA PATHS
977

Fig. 3 (a) Chaining of modules, (b) A module connected to a
constant register.

two-pattern vectors and the test response can be ob-
served using the observation path “R5-PO2.” It is no-
ticeable that these control and observation paths can
also test the RTL path “R2-MULT-R5.” ✷

Though most of the operational modules com-
monly used in data paths have two inputs, there might
be cases of chaining as shown in Fig. 3 (a). This type of
module can be regarded as a 3-input operational mod-
ule. Based on the similar reasons explained in Exam-
ple 1 it can be realized that three control paths and
only one observation path would be sufficient to test
any RTL path that crosses such a module. Some mod-
ules in a data path may have their inputs connected
to constant registers. If x inputs of an m-input op-
erational module (x < m) are directly connected to
constant registers then we regard such a module as an
(m − x)-input operational module. The module M of
Fig. 3 (b) is considered as a 1-input module.

3. The HTPT Data Path

In this section we define the HTPT data path and some
other related terms. In the following subsections we
present an analysis on HTPT data paths.

Definition 1: The degree of an RTL path is n, if it
crosses an n-input operational module.

For example, the path “R1-MUX3-MUX5-MULT-
R5” of Example 1 is an RTL path of degree 2. There
might be paths in a data path that crosse no oper-
ational module. In Fig. 1, the path “PI2-MUX1-R2”
crosses only a MUX and the path “PI1-R1” is simply a
wire. These paths are considered as RTL paths of de-
gree 1. The degree of an RTL path implies the number
of control paths that are sufficient to ensure its hierar-
chical two-pattern testability.

Definition 2: An RTL path of degree n, which
crosses an n-input operational module say M is
an HTPT path if there exist n control paths C1,
C2, . . . ,Cn and an observation path P1 such that, (i)
C1 is from a PI to the starting register of the path (in
the case that it starts at a PI, C1 is an empty path)
and (ii) C2 . . .Cn is from PI/PIs to a register/registers
which are either directly or through MUX/MUXs con-
nected to the n − 1 off-input/inputs of M (in the case

that an off-input of M is connected to a PI, the corre-
sponding control path is an empty path) and (iii) C1,
C2, . . . ,Cn support the application of two-pattern test
and (iv) P1 is from the ending register of the path to a
PO (in the case that the path ends at a PO, P1 is an
empty path).

Definition 3: The set of control paths and an obser-
vation path that are sufficient to ensure the hierarchical
two-pattern testability of an RTL path is referred to as
the test plan of the path.

Definition 4: A data path is an HTPT data path if
each of its RTL paths has a test plan.

3.1 Conditions for Control Paths to Support Two-
Pattern Test

Here, we first briefly discuss the thru function [3]. The
thru function allows the propagation of a logic value
from an input to the output of an operational mod-
ule without any change. For common two-input oper-
ational modules (e.g. adder, multiplier, etc.), a thru
function from an input to the output can be realized
by providing a constant at the other input. The nec-
essary constant can be provided either by means of a
support path or by adding a mask. For other modules
thru functions can be realized by a MUX. Initially, we
assume that a thru function exists from any input to
the output of any operational module. Under this as-
sumption, a control path can be represented by lines
and the registers it crosses. However, such an assump-
tion is not necessary for an HTPT data path and will
be relaxed later on.
The general condition: Let C1, C2, . . . ,Cn are n
control paths starting at PI/PIs and ending at n dif-
ferent points EP1, EP2, . . . , EPn (these ending points
may be either registers or PIs). Let, a vector pair (v1,
v2) span over n control paths. Hence each of v1 and v2

can be divided into n partial vectors. Each of the par-
tial vectors is associated with a control path. Based on
this, we represent v1 and v2 as v1 = v11&v12&. . .v1n

and v2 = v21&v22&. . . v2n (the symbol ‘&’ merely
links the partial vectors). Bit-width of each of v11,
v12, . . . v1n, v21, v22, . . . v2n is equal to the bit-width
of the data path. Let v11, v12, . . . v1n, v21, v22, . . . v2n

can be fed from PI/PIs according to a schedule such
that v11, v12, . . .v1n simultaneously appears at EP1,
EP2,. . .EPn and in the next clock cycle v21, v22, . . . v2n

simultaneously appear at EP1, EP2,. . .EPn then we
say that C1, C2 . . .Cn support the application of two-
pattern test. ✷

The sequential depth of a control path is the num-
ber of registers that appear on the path. To denote the
sequential depth of any control path say, C1 we use the
notation SD(C1). In the following theorem we men-
tion necessary and sufficient conditions for two control
paths to support two-pattern test.

978
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002

Fig. 4 Control paths depicting the conditions of Theorem 1.

Theorem 1: Two control paths C1 and C2 from
PI/PIs to two different points EP1 and EP2 support
the application of two-pattern test if and only if one of
the following conditions is satisfied:

Condition 1: C1∩C2 = φ i.e. C1 and C2 are disjoint.

Condition 2: |SD(C′
1) – SD(C′

2)| ≥ 2, where C′
1 and

C′
2 are disjoint parts of C1 and C2 from EP1 and EP2

respectively to the nearest merging point of C1 and C2.

Condition 3: Either C′
1 or C′

2 crosses at least two
hold registers.

Condition 4: When |SD(C′
1) – SD(C′

2)| = 1, the dis-
joint part (i.e. one of C′

1 or C′
2) with lower sequential

depth crosses a hold register.

Proof: An arbitrary vector pair (v1, v2) involving two
control paths can be represented as v1= v11&v12 and
v2 = v21&v22. In the following the sufficiency and the
necessity of the above four conditions are discussed.

Sufficiency:
Condition 1: In Fig. 4 (a), m and n are two arbitrary
numbers. Hence it represents a general topology that
matches with Condition 1. Here, v11 and v21 can be fed
from PI1 in consecutive clocks and similarly v12 and v22

can be fed from PI2. The general condition can be met
by differing the feeding from PI1 and PI2 by |m − n|
clocks.

Condition 2: In Fig. 4 (b), m and n are two arbitrary
numbers such that |n − m| ≥ 2. Hence it represents a
general topology that matches with Condition 2. All

Table 1 Schedule of partial vectors corresponding to Fig. 4 (c).

partial vectors should enter C′
1 and C′

2 clock by clock
through the merging point MP. Hence any other merg-
ing between C1 and C2 before MP has no effect. Let
n > m and n − m = r. Therefore according to Condi-
tion 2, r ≥ 2. The general condition can be met by first
allowing v11 and v21 to enter C′

1 in consecutive clocks
and then after r − 2 clocks by allowing v12 and v22 to
enter C′

2 in consecutive clocks.

Condition 3: Any of C′
1 and C′

2, say C′
1 crosses two

hold registers. First allowing v11 and v21 to enter C′
1

and then allowing v12 and v22 to enter C′
2 the general

condition can be met. Here, v11 and v21 might be re-
quired to hold for one or more clock cycles in the hold
registers of C′

1 depending on the position of the hold
registers and the number of registers in C′

1 and C′
2. An

example that matches with this condition is shown in
Fig. 4 (c) and the corresponding scheduling of the ap-
plication of the partial vectors is shown in Table 1. In
Fig. 4, registers with double line border are hold regis-
ters. Referring to Table 1, v11 and v21 are fed to C′

1 in
the 1st and 2nd clock and v12 and v22 are fed to C′

2 in
the 3rd and 4th clock. Notice that v11 and v12 simul-
taneously appear at EP1 and EP2 in the 7th clock and
v21 and v22 do the same in the following clock. The
contents of the registers for certain clocks that are not
important to this scheduling are not shown in the table.

Condition 4: Any of C′
1 and C′

2 say C′
1 crosses a

hold register and so according to Condition 4, SD(C′
2)

– SD(C′
1) = 1. Now, first allowing v11 to enter C′

1 and
then immediately allowing v12 and v22 to C′

2 and then
again allowing v21 to C′

1 the general condition can be
met. An example that matches with this condition is
shown in Fig. 4 (d) and the corresponding scheduling of
the application of the partial vectors is shown in Ta-
ble 2. The explanation of Table 2 is similar to that of
the Table 1.

Necessity:
Two control paths C1 and C2 that do not fulfill any of
the above four conditions should satisfy all the following
properties.

AMIN et al.: DESIGN FOR HIERARCHICAL TWO-PATTERN TESTABILITY OF DATA PATHS
979

Table 2 Schedule of partial vectors corresponding to Fig. 4 (d).

1. C1 and C2 are not disjoint.
2. |SD(C′

1) – SD(C′
2)| = 0 or 1.

3. None of C′
1 or C′

2 crosses two hold registers.
4. When |SD(C′

1) – SD(C
′
2)| = 1, the disjoint part (i.e.

one of C′
1 or C′

2) with lower sequential depth does not
cross a hold register.
All possible cases fulfilling the above properties are as
follows.
1. C1 and C2 are not disjoint and |SD(C′

1) –
SD(C′

2)| = 1 or 0 but none of C′
1 and C′

2 crosses any
hold register.
2. C1 and C2 are not disjoint and |SD(C′

1) –
SD(C′

2)| = 0 and any one or both of C′
1 and C′

2 crosses
a hold register.
3. C1 and C2 are not disjoint and |SD(C′

1) –
SD(C′

2)| = 1 and the disjoint part with higher sequen-
tial depth crosses a hold register.

However, no scheduling can obviously be found for
these cases to fulfill the general condition. Hence Con-
dition 1, Condition 2, Condition 3 and Condition 4 are
the only conditions for two control paths to support the
two-pattern test. ✷

In general case, any number, say n control paths
can merge in numerous fashions. Each of these fash-
ions may be of different nature depending on the num-
ber and position of hold registers in each control path.
Hence to find out necessary and sufficient conditions for
n control paths to support two-pattern test is a complex
task. However in the following theorem some sufficient
conditions are mentioned

Theorem 2: n control paths support the application
of two-pattern test if one of the following conditions is
satisfied:
1. All n paths are disjoint
2. Mutually disjoint parts of n − 1 paths from their
end points cross two hold registers.
3. The merging fashion of n paths after MP is a tree
with MP as the root and the difference of sequential
depths of any two partial paths from MP to their re-
spective end points is two or more, where MP is the
nearest merging point of all n paths from their end
points.

Proof: The proof of this theorem is similar to that of

Theorem 1. ✷

Here, one thing is noteworthy. Let an RTL path P
start at a register R and crosses an operational module
M. For P to be an HTPT path, a control path from
a PI to R is necessary. Now, if R is a feedback regis-
ter (FR) to M, the control path must not incorporate
a thru function to M. In Fig. 1, R3 is an FR to ADD.
Only one control path from a PI to R3 is “PI1-R1-ADD-
MUX2-R3.” This control path cannot be used to test
the path “R3-MUX4-ADD-MUX6-R4.” It cannot be
used because the first vector of a vector pair is loaded
at R3 to settle the signal lines throughout the path in-
cluding the part of the path in ADD. In the next clock,
the second vector is loaded at R3 to launch the desired
transition. However, the first vector cannot do its job
if the second vector propagates using a thru function
to ADD. Therefore, we should always carefully exclude
such control paths.

3.2 Graph Based Analysis of HTPT Data Paths

All RTL paths that cross an operational module having
two or more inputs can be represented as a graph. We
call this graph the structural connectivity graph (SCG)
of the module. The nodes of the SCG consist of the
module and the registers, PIs and POs that are at the
starting and at the ending of the RTL paths through
the module. The edges of the SCG represent the con-
nections of the module with the other nodes. Let the
set of nodes connected to each of the inputs of an n-
input module be Ri1, Ri2,. . .Rin and the set of nodes
connected to the output of the module is Ro. Let Ri1

= {r11, r21, r31 . . . }, Ri2 = {r12, r22, r32 . . . },. . .Rin

= {r1n, r2n, r3n . . . } and Ro= {r1, r2, r3 . . . }. From
the SCG of an n-input module an (n+1)-partite graph
can be generated. We call this the register compatibil-
ity graph (RCG) of the module. Ri1, Ri2,. . .Rin and
Ro are the n + 1 set of nodes. The edges of the RCG
are determined by the following rules.

Rule 1: If there exist n control paths C1, C2. . .Cn

from PI/PIs to any node rj1∈Ri1, rk2∈Ri2,. . . rln∈ Rin,
that support the application of two-pattern test, there
exist edges between any two nodes of rj1, rk2, . . . and
rln.

Rule 2: If there exists an observation path from any
node rm ∈ Ro to a primary output, there exist edges
between rm to any node in Ri1 and Ri2, and . . .Rin.

Example 2: The SCG of MULT of Fig. 1 is shown in
Fig. 5 (a). Figure 5 (b) shows the RCG of MULT gener-
ated under the assumption that a thru function exists
from any input to the output of any operational mod-
ule. Table 3 shows that which edge/edges in Fig. 5 (b)
are related to which control or observation path/paths.

✷

980
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002

Fig. 5 (a) SCG and (b) RCG of MULT of Fig. 1.

Table 3 List of edges of the graph in Fig. 5 (b) and correspond-
ing paths.

Definition 5: An edge in the RCG of a module from
any node in Ro to any node in Ri1or Ri2,. . . orRin, ac-
tually represents an RTL path through the module and
hence we refer to such an edge as a path edge.

Definition 6: An edge in the RCG between any two
nodes of Ri1,Ri2,. . . andRin is a control edge.

Definition 7: If a sub-graph of the RCG of a module
with only one node from each of Ri1, Ri2,. . .Rin and
Ro is a clique, then this is referred to as a test clique.

A test clique implies the existence of n control paths
and one observation path, which are sufficient to test
n RTL paths passing through n inputs of the module,
i.e. a test clique in the RCG of an n-input module
incorporates test plan for n paths.

Theorem 3: All RTL paths through a module are
two-pattern testable if the path edges corresponding
to all RTL paths through the module exist in its RCG
and each path edge is part of some test clique.

Proof: If a path edge is part of a test clique, then
this test clique is sufficient to guarantee the two-pattern
testability of the corresponding path. Now if each path
edge is part of some test clique, then each RTL path
passing through the module is two-pattern testable.

✷

4. Details of the DFT Method

This section discusses the DFT elements we utilize in
our approach and also the algorithm for efficient addi-
tion of the DFT elements to augment a data path to
an HTPT one.

Fig. 6 Rotating enhanced flip-flop.

4.1 The DFT Elements

We consider three types of DFT elements in our ap-
proach. They are MUXs, thru functions and rotating
enhanced flip-flops (REFFs). The operation of a MUX
is well known. We briefly explained about the thru
function in Sect. 3.1. An REFF consists of two flip-
flops and a MUX as shown in Fig. 6. The control input
of the MUX is used as the mode selector. In normal
mode the REFF behaves like a normal flip-flop. Using
normal mode two bits can be loaded to the REFF. Just
after loading two bits, the mode can be changed to test
mode. In test mode the bits exchange their position at
every clock but remain stored in the REFF. Hence an
REFF can be regarded as a 2-bit hold register. Of a
two-pattern vector, the bit of which vector should be
loaded first to the REFF depends on the time of loading
and the time of applying the vectors.

4.2 Algorithm for Adding DFT Elements

Figure 7 illustrates the flowchart of our algorithm. In
the following subsections we describe in detail the tech-
niques and heuristics we use for different steps of the
flowchart. For simplicity we describe our algorithm as-
suming that operational modules in the data path has a
maximum two inputs and there is no chaining of mod-
ules. This means there is no RTL path of degree 3 or
more in the data path. Most of the benchmarks satisfy
this condition. Also, our approach can be extended for
data paths with modules having more than two inputs.

4.2.1 Selecting Potential Control and Observation
Paths

Every register (other than the constant registers) of a
data path is at the starting of some RTL path and also
at the ending of some RTL path. Control paths are
therefore necessary from PIs to all registers and so are
the observation paths from all registers to POs. How-
ever the number of paths in the data path can be very
large and we use some heuristics to select some poten-
tial control and observation paths. We make a set CP
of potential control paths and a set OP of potential

AMIN et al.: DESIGN FOR HIERARCHICAL TWO-PATTERN TESTABILITY OF DATA PATHS
981

Fig. 7 Flow-chart of the algorithm.

observation paths for each register R. The first mem-
bers of CP are the shortest depth paths from each PI
to R. We favor the shortest depth paths because they
help to reduce the test application time. To determine
the shortest depth control paths, we represent the data
path as a port digraph [8]. The digraph of the data
path of Fig. 1 is shown in Fig. 8 (a). A node represents
a port in the data path and any edge say, (u, v) im-
plies that either a metal line connects u to v or u and
v are input port and output port, respectively of the
same element. The shortest depth control paths can be
selected by performing a modified breadth first search
(BFS) on the digraph. The BFS is performed n times
where n is the number of PIs of the data path. Each
of n PIs are once considered as the source node. Fig-
ure 8 (b) shows the breadth first tree (thick lines) of
the digraph of Fig. 8 (a) considering PI1 as the source
node. This tree contains the shortest depth paths from
PI1 to each register reachable from PI1. Similarly the
members of OP of any register R are the shortest depth
paths from R to each PO. The shortest depth observa-
tion paths can be determined by reversing the edges of
the digraph and performing similar BFS m times where
m is the number of POs. For each member of CP and
OP of each register we maintain a variable, which we
refer to as the “cost” of the path. The cost of the path
is nothing but the number of thru functions associated
with the path, i.e. the cost of a thru function is 1.

Fig. 8 (a) Port digraph of the data path of Fig.1, (b) Breadth
first tree of the digraph of fig.8(a).

4.2.2 Adding Direct Paths to Feedback Registers

We first consider the FRs of all modules. Suppose a
register Rf appears on both input and output sides
of the SCG of a module M. This implies that Rf is
an FR to M. Now, if a control path from a PI to Rf

incorporates a thru function to M, then this control
path cannot be used to test any RTL path that crosses
M (explained in Sect. 3.1). So we first find in the CP
of Rf for a control path without a thru function to M.
If we succeed, we switch to another FR of M or FR
of other module. If no such control path is found in
the CP of Rf we search the entire data path. For this
search, we remove the edges from inputs to output of
M in the digraph and then find shortest path from each
PI to Rf until a path is found. If a path is found, this
path is added to the CP of Rf . However the failure of
such a search implies that there is no control path from
any PI to Rf without a thru function to M. Under such
a situation a direct path is added to Rf using a test
MUX from a PI. This PI is chosen based on the control
paths in CPs of the registers connected to the other
input of M (input to which Rf is not connected). If the
majority of the nodes connected to the other input of M
have control path from a PI, we choose other PI for Rf .
This direct path is included to the CP of Rf . In case
the data path has single input, it might be difficult to
find a suitable PI. In such a situation we augment each
flip-flop of Rf to REFF. This information is added to
the paths in the CP of Rf . We then switch to another
FR of M or FR of another module until all FRs in the
data path are considered. We start to consider the FRs
of the modules nearer to PIs first. Sometimes a single
MUX can be used for more than one FR of a module.
In Fig. 9, the test MUX is providing control paths from
PI2 to both R3 and R4. In the case of a single input
Data path, if it becomes necessary to augment flip-flops
of more than one register to REFF, we use a global

982
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002

Fig. 9 The HTPT equivalent of the data path of Fig. 1.

REFF register connected to the only PI of the data
path. Such an REFF register can be used as a PI for
two-pattern testing. This is because an REFF can store
two bits for as long as it is necessary. Direct paths then
can be added from the global REFF register to FRs
using test MUXs. We use global REFF because the
hardware overhead incurred by registers is very high.
Whenever we add any DFT element, we update the CPs
of registers affected by the addition. Addition of test
MUXs and REFF registers creates some more paths of
degree 1 in the data path. We should also consider
the two-pattern testability of these paths. Because of
adding DFT elements in this step, the SCGs of modules
in the data path remain unchanged.

4.2.3 Determining Test Plans

We discussed our algorithm for adding some DFT ele-
ments in the previous section. In this section, we add
more DFT elements to ensure the test plans for all RTL
paths. First we address the RTL paths of degree 2 and
then of degree 1.
RTL paths of degree 2: We consider all RTL paths
passing through a module at a time. The following
four steps are performed for each 2-input operational
module.
Generating RCG from SCG (step 1): Let M be a 2-
input module and Ri1, Ri2 and Ro are the set of nodes
connected to the left input, right input and output of
the module. Each member of Ri1 and Ri2 has a set of
control paths CP and each member of Ro has a set of
observation path OP. Let rj1∈Ri1 and rk2∈Ri2. Now
we look for two control paths, one from CP of rj1 and
other from CP of rk2, such that they satisfy any one of
the four conditions of Theorem 1. In case we find more
than one pair of control paths to satisfy any condition
of Theorem 1, we choose the pair having lowest cost.

We add a control edge between rj1 and rk2 in the RCG
and keep a record of the lowest cost control paths that
support this edge. We should keep in mind that in the
case that rj1 and rk2 is a FR to M, we cannot consider a
control path for rj1 or rk2 incorporating a thru function
to M unless ril or rjr is augmented to an REFF register.
If we fail to find a control edge between rj1 and rk2 we
switch to another pair of nodes. We search for control
edges between every possible pair of nodes with one
node from Ri1 and one node from Ri2. For each member
of Ro, we choose the lowest cost observation path from
its OP and add path edges to the RCG as described in
rule 2 in Sect. 3.2.
Adding DFT elements to Augment RCG (step 2): In
the RCG, some node/nodes of Ri1 or Ri2 may not be
connected to any control edge. For any such node we
add DFT elements to create a control edge in the RCG
incorporating this node. First we try by adding a direct
path to such a node from some PI by means of a test
MUX. In the worst case we augment such a node to
an REFF register. However, if it becomes necessary
to augment more than one register, we create a global
REFF register as mentioned in Sect. 4.2.2. Direct paths
can then be created from the global REFF register to
the required nodes by means of test MUXs. The RCG
of M is now sufficient for two-pattern testability of any
RTL path through it. However, when a direct path to
a node is created, we check whether this path can be
utilized to remove some DFT elements added for the
previously processed modules. A direct path to a node
might be used instead of some other necessary control
path/paths to the same node, which incorporates a thru
function.
Minimizing control edges in RCG (step 3): The RCG
may have some excess control edges. Of all the control
edges we select the minimum number of them that fulfill
the condition that each node in Ri1 or Ri2 is connected
to at least one control edge. The minimum number of
control edges will create the minimum number of test
cliques in the RCG that are sufficient for test plans of
RTL paths through M.
Adding DFT elements for thru Functions (step 4): At
this step, we relax the assumption that a thru function
exists from any input to the output of any operational
module. We first check whether a thru function that
we need really exists (can be implemented by a sup-
port path) or whether we should add a DFT element
(mask or others) for it. To do this we consider one
test clique at a time. A test clique in the RCG of a
two-input operational module incorporates two control
paths and one observation path. We search for sup-
port paths for the thru functions associated to these
three paths using some manual calculation. A support
path may have a timing conflict with control paths or
other support paths. Timing conflict means it becomes
necessary to provide different values at the same PI at
the same time. We add mask elements to realize the

AMIN et al.: DESIGN FOR HIERARCHICAL TWO-PATTERN TESTABILITY OF DATA PATHS
983

thru functions for which any support path cannot be
found without timing conflict. The cost of the thru
function realized by a mask element becomes zero and
we update the cost of all control and observation paths,
which includes this thru function. We consider all the
test cliques in the RCG of M in a similar way.

The above four steps are performed for all 2-input
modules considering the modules nearer to the PIs first.
When we finish all the 2-input modules, the testability
of all the RTL paths of degree 2 is ensured.
RTL paths of degree 1: We now consider the testabil-
ity of RTL paths of degree 1. Let Rs and Re be the
start and end registers of an RTL path of degree 1. We
choose the lowest cost path from the CP of Rs as the
control path and the lowest cost path from the OP of
Re as the observation path. If any thru function of cost
1 is associated with these paths, we try to realize it us-
ing a support path. In case we cannot find any support
path without timing conflict, we add a mask element
or a multiplexer to realize them. We consider all RTL
paths of degree 1 in a similar way. Figure 9 shows the
HTPT equivalent of the data path of Fig. 1 augmented
by following the algorithm described above.

4.3 Relaxing the Assumption of Bit Width

In practice, a data path may not be of consistent bit
width. It is not a problem, if a control path becomes
gradually narrower or an observation path becomes
gradually wider in their respective downstream. How-
ever, in the case of a control path, it is a problem if
it is narrower than its end point anywhere in the up-
stream. Such a problem can be tackled by means of a
MUX or an REFF and a MUX. In the case of an ob-
servation path, it is a problem if it becomes narrower
than its start point anywhere in the downstream. Such
a problem can be tackled by using one or more MUXs.

5. Experimental Results

In this section we present experimental results to com-
pare our method with the enhanced scan approach.
For comparing area overhead we applied our method
to data paths of three benchmark circuits and a RISC
processor provided by industry. The characteristics of
these data paths are shown in Table 4. In this table
PIs and POs denote the number of primary inputs and
primary outputs of the data path respectively. REGs,
MUXs and OPs are the numbers of registers, multiplex-
ers and operational modules in the data path. The last
column of Table 4 shows the areas of the data paths
generated by the logic synthesis tool Design Compiler
(Synopsys).

Table 5 shows the results regarding hardware over-
head. In both our method and the enhanced scan ap-
proach, the percentage of area overhead decreases with
the increase in bit width of the data paths. However,

Table 4 Circuit characteristics.

Table 5 Hardware overhead.

Table 6 Test application time for 100% coverage of robust and
non-robust testable paths (cycles).

the area overhead incurred by our method is always
much lower. For our DFT method, the columns MUX,
thru and REFF show the number of added MUXs, thru
functions and REFF registers.

The tool we used for the experiments to compare
test application time are DelayPath and TestGen from
Synopsys. DelayPath can generate path list for designs
of up to 5000 gates. And TestGen can generate tests
for only robust and nonrobust testable paths. Because
of these limitations we conducted our experiments for
the data path of Paulin, LWF and Tseng considering
their bit width only 8. Also, test vectors that cover
only robust and non-robust testable paths are consid-
ered. 100% coverage is obtained for robust and non-
robust testable paths in both our method and the en-
hanced scan approach. Identifying and generating tests
for functional sensitizable paths in a large multi-level
circuit is a hard task [6]. However, if test can be gener-
ated for such paths, both our method and the enhanced
scan approach allow their application.

Table 6 shows the results of our experiments re-
garding test application time. For all three data paths
the test application time of our method is much shorter
compared to that of the enhanced scan approach. This
is because, in the enhanced scan approach, the test vec-
tors and test responses are shifted in to and shifted out
from the enhanced scan chain serially. Contrary to this
our method supports the parallel propagation of test

984
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.6 JUNE 2002

vectors and test responses via data path lines.

6. Conclusions

The concept of hierarchical testability for delay faults
is introduced in this paper. Precomputed vector pairs
are propagated via control paths from primary inputs to
appropriate locations and are applied in a two-pattern
fashion to test paths of unity sequential depth. Test
responses are propagated via observation paths from
the end points of paths under test to primary outputs.
A DFT method is also presented that can be applied to
augment a data path to become a hierarchically two-
pattern testable one. Priority has been given to use
the existing paths in the data path as control paths
and observation paths. Experimental results show that
the area overhead and test application time of our DFT
method is smaller compared to those of the enhanced
scan approach for some benchmark data paths.

Acknowledgments

This work was sponsored in part by NEDO (New En-
ergy and Industrial Technology Development Organiza-
tion) through the contract with STARC (Semiconduc-
tor Technology Academic Research Center) and sup-
ported by Japan Society for the Promotion of Science
(JSPS) under the Grant-in-Aid for Scientific Research
and by Foundation of Nara Institute of Science and
Technology under the grant for activity of education
and research.

References

[1] B.I. Dervisoglu and G. E. Stong, “Design for testability:
Using scan path techniques for path-delay test and mea-
surement,” Proc. Int. Test Conf., pp.365–374, 1991.

[2] S. Dasgupta, R.G. Walther, and T. W. Williams, “An en-
hancement to LSSD and some application of LSSD in relia-
bility, availability and serviceability,” Proc. Fault Tolerant
Computing Symp., FTCS-11., pp.32–34, 1981.

[3] S. Ohtake, H. Wada, T. Masuzawa, and H. Fujiwara, “A
non-scan DFT method at register-transfer level to achieve
complete Fault efficiency,” Proc. ASP-DAC, pp.599–604,
2000.

[4] I. Ghosh, A. Raghunathan, and N. K. Jha, “Design for hier-
archical testability of RTL circuits obtained by behavioral
synthesis,” IEEE Trans. Comput.-Aided Des. Integrated
Circuits & Syst., vol.16, no.9, pp.1001–1014, 1997.

[5] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Functionally
testable path delay faults on a microprocessor,” IEEE De-
sign & Test of Computers, pp.6–14, Oct.-Dec. 2000.

[6] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI
Circuits, Kluwer Academic Publishers, 1998.

[7] W. Wang and S.K Gupta “Weighted random robust path
delay testing of synthesized multilevel circuits,” Proc. 1994
IEEE VLSI Test Symp., pp.291–297, 1994.

[8] H. Wada, T. Masuzawa, K.K. Saluja, and H. Fujiwara, “De-
sign for strong testability of RTL data paths to provide
complete fault efficiency,” Proc. Int. Conf. on VLSI Design,
pp.300–305, 2000.

Md.Altaf-Ul-Amin received his
B.Sc. degree in electrical and electronic
engineering from Bangladesh University
of Engineering and Technology (BUET),
Dhaka and M.S. degree in electrical,
electronic and systems engineering from
Universiti Kebangsaan Malaysia (UKM).
Currently he is pursuing his PhD degree
in Nara Institute of Science and Technol-
ogy (NAIST), Japan. His research inter-
ests are design and design for testability

of digital, analog and mixed-mode VLSI circuits.

Satoshi Ohtake received the B.E. de-
gree in computer science from the Univer-
sity of Electro-Communications, Tokyo,
Japan, in 1995, and M.E. and Ph.D. de-
grees in information science from Nara In-
stitute of Science and Technology, Nara,
Japan, in 1997 and 1999, respectively. He
was a Research Fellow of the Japan So-
ciety for the Promotion of Science from
1998 to 1999. Presently he is an Assis-
tant Professor of Graduate School of In-

formation Science, Nara Institute of Science and Technology. His
research interests are VLSI CAD, design for testability, delay test
and test pattern generation. He is a member of IEEE Computer
Society.

Hideo Fujiwara received the B.E.,
M.E., and Ph.D. degrees in electronic en-
gineering from Osaka University, Osaka,
Japan, in 1969, 1971, and 1974, respec-
tively. He was with Osaka University from
1974 to 1985 and Meiji University from
1985 to 1993, and joined Nara Institute of
Science and Technology in 1993. In 1981
he was a Visiting Research Assistant Pro-
fessor at the University of Waterloo, and
in 1984 he was a Visiting Associate Pro-

fessor at McGill University, Canada. Presently he is a Professor
at the Graduate School of Information Science, Nara Institute of
Science and Technology, Nara, Japan. His research interests are
logic design, digital systems design and test, VLSI CAD and fault
tolerant computing, including high-level/logic synthesis for testa-
bility, test synthesis, design for testability, built-in self-test, test
pattern generation, parallel processing, and computational com-
plexity. He is the author of Logic Testing and Design for Testa-
bility (MIT Press, 1985). He received the IECE Young Engineer
Award in 1977, IEEE Computer Society Certificate of Appreci-
ation Award in 1991, 2000 and 2001, Okawa Prize for Publica-
tion in 1994, IEEE Computer Society Meritorious Service Award
in 1996, and IEEE Computer Society Outstanding Contribution
Award in 2001. He is an advisory member of IEICE Trans. on
Information and Systems and an editor of IEEE Trans. on Com-
puters, J. Electronic Testing, J. Circuits, Systems and Comput-
ers, J. VLSI Design and others. Dr. Fujiwara is a fellow of the
IEEE, a Golden Core member of the IEEE Computer Society,
and a member of the Information Processing Society of Japan.

