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Abstract. This paper introduces a new concept of testability called consecutive testability and proposes a design-
for-testability method for making a given SoC consecutively testable based on integer linear programming problem.
For a consecutively testable SoC, testing can be performed as follows. Test patterns of a core are propagated to the
core inputs from test pattern sources (implemented either off-chip or on-chip) consecutively at the speed of system
clock. Similarly the test responses are propagated to test response sinks (implemented either off-chip or on-chip)
from the core outputs consecutively at the speed of system clock. The propagation of test patterns and responses
is achieved by using interconnects and consecutive transparency properties of surrounding cores. All interconnects
can be tested in a similar fashion. Therefore, it is possible to test not only logic faults but also timing faults that
require consecutive application of test patterns at the speed of system clock since the consecutively testable SoC
can achieve consecutive application of any test sequence at the speed of system clock.
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1. Introduction

A fundamental change has taken place in the way
digital systems are designed. It has become possible to
design an entire system, containing millions of transis-
tors, on a single chip. In order to cope with the growing
complexity of such modern systems, designers often
use pre-designed, reusable megacells knows as cores.
Core-based systems-on-a-chip (SoC) design strategies
help companies significantly reduce the time-to-market
and design cost for their new products.

However, SoCs are difficult to test after fabrication
[16]. In order to make SoC testable, the following
three conditions have to be satisfied. (1) There exist
test pattern source (TPS) and test response sink (TRS)

for each core. The TPS generates the test patterns for
the embedded core and the TRS observes the test re-
sponses. TPS as well as TRS can be implemented ei-
ther off-chip or on-chip. (2) There exists test access
mechanism for each core. The test access mechanism
propagates test patterns and responses. It can be used
for on-chip propagation of test patterns from a TPS
to the core-under-test, and for on-chip propagation of
test responses from the core-under-test to a TRS. (3)
Interconnects that exist between cores are testable.

A major difficulty to make SoC testable concerns
accessibility of embedded cores. Several techniques
of design-for-testability (DFT) have been proposed.
There are three main approaches to achieve accessi-
bility of embedded cores. The first approach is based
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on test bus architectures by which the cores are iso-
lated from each other in test mode using a dedicated
bus [2–4, 10, 13] or flexible TESTRAIL [8] around the
cores to propagate test data. Test time reduction is the
main objective in the majority of these methods. For
example, [3] used an integer linear programming for-
mulation to find the best test assignment and optimize
the bandwidth distribution among various test buses to
minimize time. The second approach uses boundary
scan architectures [12, 14] to isolate the core during
test. The third approach uses transparency [6, 7, 11]
or bypass [9] mode for embedded cores to reduce the
problem to one of finding paths from TPS to core inputs
and from core outputs to TRS.

Under the design environment for SoCs, pre-
computed test sets are provided for every core. These
test sets may contain functional vectors, scan vectors or
ordered test sequences for non-scan sequential circuits.
They may be for logic faults such as stuck-at faults or
timing faults such as delay faults. Moreover, some cores
may be able to be at-speed testable in order to increase
the coverage of non-modeled and performance-related
defects. For that reason, it is necessary to be capable of
applying any test sequence to each core and observing
any response sequence from the core consecutively at
the speed of system clock. We call such a test access
consecutive test access. Although test bus approach is
consecutively test accessible for cores, it is difficult to
perform consecutive test access for interconnects. On
the other hand, boundary scan, transparency, and by-
pass mode approaches can test interconnects. However,
they are not consecutively test accessible.

There have been reported two works [5, 15] to realize
the consecutive test accessibility for both cores and
interconnects. In [15], assuming that TPS and TRS
are implemented only off-chip (i.e., embedded cores
are tested by using external automatic test equipment),
we proposed a new testability of SoCs called consec-
utive testability. A consecutively testable SoC consists
of consecutively transparent cores and can achieve con-
secutive test access to all cores and all interconnects.
Consecutive transparency of a core guarantees consec-
utive propagation of any test/response sequence from
the core input to the core output with some latency.
In [5], a synthesis-for-transparency approach was pre-
sented to make cores single-cycle transparent by em-
bedding multiplexers. This single-cycle transparency
is a special case of consecutive transparency of [15]
such that the latency of the consecutive transparency is
restricted to zero, i.e., single-cycle transparency is the

consecutive transparency with zero latency. Therefore,
area overhead for making cores consecutively transpar-
ent with some latency is generally lower than that for
making cores single-cycle transparent (i.e., transparent
with zero latency).

In this paper, we consider SoCs that include BISTed
(Built-In Self Tested) cores and opaque cores as well as
non-BISTed cores and consecutively transparent cores,
and extend the concept of consecutive testability of
SoCs so that TPS and TRS implemented both on-chip
and off-chip can be dealt with. Then, we present a DFT
method to make a given SoC consecutively testable.
Consecutive testability of an SoC guarantees that, for
each core (for each interconnect), by using intercon-
nects and consecutive transparency properties of sur-
rounding cores, test patterns can be fed into the core
(the interconnect, respectively) from TPS and the re-
sponses can be propagated to TRS consecutively at
the speed of system clock. Therefore, consecutively
testable SoCs can achieve high quality of test since
any test sequence for a core can be applied to the core
from TPS and any response sequence can be observed
at TRS consecutively at the speed of system clock.

This paper is organized as follows. We introduce an
SoC model in Section 2. In Section 3, we introduce the
consecutive transparency, the consecutive testability,
and present a new test methodology for testing SoCs.
We present a graph model for an SoC in Section 4. In
Section 5, we present a DFT method for consecutive
testability. The experimental results are discussed in
Section 6. Finally, Section 7 concludes this paper.

2. System-on-a-Chip

An SoC consists of cores, primary inputs, primary out-
puts and interconnects (Fig. 1). For the sake of unifor-
mity, user-defined logic can be considered as another
core. Each individual core is testable by either exter-
nal test or built-in self test. In case a core is testable
by external test, a pre-computed test set is available
for the core which, if applied to the core, will result
in a very high fault coverage. We introduce ports of
each core as interface points in a natural fashion: sig-
nals enter into a core through its input ports, and exit
through its output ports. An interconnect connects an
output port with an input port, a primary input with
an input port, or an output ports with a primary out-
put. Any number of interconnects can connect to the
same output port (i.e., fanout is allowed), but only one
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Fig. 1. System-on-a-chip.

interconnect can connect to the same input port. It is
not necessary that interconnects are of the same bit
width.

3. A Test Methodology for System-on-a-Chip
Based on Consecutive Testability

We present a new test methodology for SoCs based
on consecutive testability. Fig. 2 illustrates a consecu-
tively testable SoC and the consecutive test access to
Core 3. A control signal is provided for each core by a
test controller (either off-chip or on-chip). Each control
signal of a core determines the current test mode of the
core called a configuration. The types of configurations
are consecutive transparencies and functions as a TPS
and a TRS. Core 1 works as a TPS for Core 3. Core
2 realizes a consecutive transparency of shaded output
port and Core 4 realizes a consecutive transparency of
shaded input port. Consecutive transparency of an in-
put port of a core guarantees that any input sequence
applied to the input port can propagate to some output
ports of the core consecutively at the speed of system
clock. Consecutive transparency of an output port of a
core guarantees that any output sequence that appears
at the output port can propagate from some input ports
of the core consecutively at the speed of system clock.
Consecutive testability of an SoC guarantees that, for
each core (for each interconnect) in the SoC, by select-
ing configurations of other cores, any test sequence can
be consecutively fed into the core (the interconnect, re-
spectively) from TPSs and any response sequence can

Fig. 2. Consecutive test access.

be consecutively propagated to TRSs through consec-
utive transparencies of other cores and interconnects.
We define the consecutive transparency of a core and
the consecutive testability of an SoC in the following
subsections.

3.1. Consecutive Transparency of a Core

Definition 1 (Consecutive transparency of a core). Let
I (i) be the i th bit of an input port I , and O( j) be the j th
bit of an output port O . Suppose that there exists a con-
figuration of a core which can realize a path P between
I (i) and O( j). P is called a consecutively transparent
path if any input sequence applied to I (i) can be con-
secutively observed at O( j) after some latency, and
then I (i) and O( j) are said to be consecutively trans-
parent. Moreover, a core is called to be consecutively
transparent if, for each port of the core, there exists a
configuration that can make all bits of the port consec-
utively transparent.

Fig. 3 illustrates various configurations of a con-
secutively transparent core. A consecutively transpar-
ent core has generally several configurations, and each
configuration can be identified by an ID number. By
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Fig. 3. Various configurations of a consecutively transparent core.
(a) Configuration ID 1; (b) Configuration ID 2; (c) Configuration ID
3; (d) Configuration ID 4; (e) Configuration ID 5.

selecting a configuration of a core, consecutively trans-
parent paths of an I/O port are realized and the I/O port
can be made consecutively transparent. For each con-
figuration, all consecutively transparent paths between
an input port and an output port are represented as one
consecutively transparent path.

We classify consecutively transparent paths into
three types, PA (Propagation AND), PO (Propagation
OR), and JA (Justification AND). PA is a type for a con-
secutively transparent path of an input port that propa-
gates part of bit-width of test responses applied to the
input port. On the other hand, PO is a type for a con-
secutively transparent path of an input port that propa-
gates all bit-width of test response applied to the input
port. For an input port, all consecutively transparent
paths of type PA are necessary to make the input port
consecutively transparent. However, only one consecu-
tively transparent path of type PO is sufficient to make
the input port consecutively transparent. JA is a type
for a consecutively transparent path of an output port
that propagates all or part of bit-width of test sequence
which appears at the output port. For an output port, all
consecutively transparent paths are necessary to make
the output port consecutively transparent.

Fig. 3(a) illustrates type PA such that any input se-
quence applied to an input port I1 propagates to only
one output port O2. Fig. 3(b) illustrates type PA such
that any input sequence applied to an input port I2

propagates to two output ports (O1 and O2), where
any input sequence of bit width W (I2) is bit-sliced
(W (I2) = w2 + w3) and observed at two output ports
(O1 and O2). Fig. 3(c) illustrates type PO such that any
input sequence applied to I3 propagates to two output
ports (O1 and O2), where any input sequence of bit

width W (I3) is fanouted (W (I3) = w4 = w5) and
observed at two output ports (O1 and O2). Fig. 3(d)
illustrates type JA such that any output sequence that
appears at the output port O1 is propagated from only
one input port I2. Fig. 3(e) illustrates type JA such that
any output sequence that appears at the output port O2

is propagated from two input ports (I1 and I3), where
any output sequence of bit width W (O2) is constructed
by the two input sequences (W (O2) = w7 + w8).

3.2. Test Pattern Source and Test Response Sink

The test pattern source (TPS) generates test patterns
for cores and interconnects, and the test response sink
(TRS) observe the test responses. TPS and TRS can be
implemented either off-chip or on-chip. In this paper,
we classify TPS and TRS into the following three types
(Fig. 4).

1. SBIST . SBIST is a type of TPS and TRS implemented
inside of a core (i.e., on-chip) and used for testing
the core itself (Fig. 4(c)). A core which has this type
of TPS and TRS can be self-testable.

2. Soff . Soff is a type of TPS and TRS implemented
off-chip by external automatic test equipment (ATE)
(Fig. 4(a)). TPS of type Soff can generate any test
sequence of any length, and TRS of type Soff can
observe any response sequence of any length con-
secutively at the speed of ATE system clock, which
is usually slower than SoC system clock.

3. Son. Son is a type of TPS and TRS implemented
inside of a core (i.e., on-chip) and used for testing
other cores and interconnects (Fig. 4(b)). Since TPS
and TRS of type Son are implemented on-chip, mem-
ory spaces for them are limited. Therefore, TPS and
TRS of type Son cannot deal with arbitrary long se-
quences like TPS and TRS of type Soff . However,

Fig. 4. Types of TPS and TRS.
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Fig. 5. Various configurations of a core that has TPS and TRS
of type Son. (a) Son; (b) Configuration ID 6; (c) Configuration
ID 7; (d) Configuration ID 8.

within the limited memory spaces, TPS of type Son

can generate any test sequence and TRS of type Son

can observe any response sequence consecutively
at the speed of system clock. A core which can be
tested by TPS and TRS of type Son can also be tested
by TPS and TRS of type Soff . A core which has
TPS and TRS of type Son has several configurations
(Fig. 5), and each configuration can be identified by
an ID number. By selecting a configuration of the
core, the core can realize functions as a TPS and a
TRS.

3.3. Consecutive Testability of a System-on-a-Chip

In this subsection, we introduce a new testability of
an SoC called consecutive testability. In this paper, we
assume that the following informations are given as an
SoC.

• Connectivity information between cores
• Test informations of each core

– type of TPS/TRS that can test the core (SBIST or
Soff or Son)

– configurations if the core is consecutively trans-
parent

– configurations if the core has TPS/TRS of type Son

The length of test sequence required to test an inter-
connect is usually much shorter than that required to
test a core. Hence, we assume all interconnect can be
tested by TPS/TRS of type Son. In order to test a core,
it is necessary to apply test patterns consecutively to
all input ports of the core simultaneously. On the other

hand, it is not necessary to observe all output ports of
the core simultaneously. It is sufficient only to observe
one output port at a time. Therefore, we define the con-
secutive test accessibility of a core and the consecutive
test accessibility of an interconnect as follows.

Definition 2 (Consecutive test accessibility of a core).
A core C is said to be consecutively test accessible if
the following two conditions are satisfied at the same
time for each output port O of C .

1. Any test sequence generated by the TPS required
to test C can be applied to all input ports of C con-
secutively at the speed of system clock (consecutive
controllability of C for TPS).

2. Any response sequence appeared at O can be propa-
gated to the TRS required to test C consecutively at
the speed of system clock (consecutive observability
of O for TRS).

Definition 3 (Consecutive test accessibility of an in-
terconnect). For an interconnect E that connects an
output port O with an input port I , E is said to be
consecutively test accessible if O and I satisfies the
following two conditions at the same time.

1. Any test sequence generated by the TPS required
to test E can be applied to O consecutively at the
speed of system clock (consecutive controllability
of E for TPS).

2. Any response sequence appeared at I can be propa-
gated to the TRS required to test E consecutively at
the speed of system clock (consecutive observabil-
ity of I for TRS).

Then, we define the consecutive testability of an SoC
as follows.

Definition 4 (Consecutive testability of an SoC). An
SoC is said to be consecutively testable if all cores
and all interconnects in the SoC are consecutively test
accessible.

4. Graph Modeling

In this section, we define a core connectivity graph
to represent an SoC, and consider the consecutive
testability on the graph.
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Definition 5 (Core connectivity graph). We define a
core connectivity graph G = (V, E, λ) as a following
directed graph to represent an SoC.

• V = VP I ∪ VP O ∪ Vin ∪ Vout ∪ Vsource ∪ Vsink where
VPI is the set of all PIs of the SoC, VPO is the set of
all POs of the SoC, Vin is the set of all input ports
of cores in the SoC, and Vout is the set of all output
ports of cores in the SoC. Vsource is the set of all TPSs
of type Son in the SoC. Vsink is the set of all TRSs of
type Son in the SoC.

• E = Ecore ∪ Enet where Ecore = {(x, y) ∈ Vin ×
Vout | input port x is connected to output port y
by a consecutively transparent path}, and Enet =
{(y, x) ∈ Vout × Vin | output port y is connected to
input port x by an interconnect}.

• Labeling function λ : E → 2C×I×T ×W where C is
the set of all cores in the SoC, I is the set
of all ID numbers of configurations, T = {JA,

JO, PA, PO | types of consecutively transparent path
(JO is for fanouted interconnects)}, and W is the
set of all bit widths of e ∈ E . Especially for e ∈
Enet, λ(e) = {{φ, φ, JO, bit width of e}, {φ, φ, PO,

bit width of e}}.

Fig. 6 illustrates a core connectivity graph G which
corresponds to the SoC of Fig. 1. Fig. 7 illustrates edges
labeled by λ which correspond to the core of Figs. 3
and 5.

We refer to a vertex that has no input edge as a
source, and a vertex that has no output edge as a sink.
For a core connectivity graph G, selecting a configu-
ration of a core is to leave edges which have labels of

Fig. 6. Core connectivity graph.

Fig. 7. Label by λ.

the configuration and to remove other edges from the
core.

Then, we define a justification subgraph of a core, a
justification subgraph of an interconnect and a prop-
agation subgraph of a port as subgraphs of a core
connectivity graph.

Definition 6 (Justification subgraph of a core). Let
G = (V, E, λ) be a core connectivity graph of an SoC
and G J = (VJ , EJ , λ) be an acyclic subgraph of G.
For a core c ∈ C , G J is called a justification subgraph
of c if G J satisfies all the following conditions.

1. All input ports of c are sinks in G J and there exists
no sink except for all input ports of c in G J .

2. For each edge u ∈ EJ , u has a label of either JO or
JA.

3. Let G ′ = (V ′, E ′, λ) be a subgraph of G obtained
by selecting a configuration for each core. For each
edge u ∈ EJ ,

(a) u contains all input edges of u in G ′, and
(b) u contains only one output edge of u in G ′ when

output edges have labels of JO in G ′.

Lemma 1. Let VS be the set of all source vertices
in G J of core c. Then c is consecutively controllable
for VS.

Proof: By Definition 5 and condition 2 of
Definition 6, all edges in G J can be used to apply
test patterns consecutively at the speed of system clock
since each edge in G J represents either a consecutively
transparent path or an interconnect, and has a label of
either JO or JA. By condition 1 of Definition 6, there
exist simple paths from more than one element in VS

to each input port of c. By condition 3 of Definition 6,
all edges in the same core have the same ID number of
configuration since only one configuration is selected
for each core. Let v be the vertex in Vout (i.e., v is an
output port of a core). If a configuration to realize a
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consecutive transparency of v is selected, all consec-
utively transparent paths for v exist in G J (condition
3(a) of Definition 6). If a configuration to realize a con-
secutive transparency of v is not selected, v is a source
vertex in G J . By condition 3(b) of Definition 6, it is
possible to apply any test sequence for all simple paths
at the same time.

Therefore, we can see that any test sequence gener-
ated at VS can be applied to all input ports of c along
all simple paths in G J consecutively at the speed of
system clock. This completes the proof.

Definition 7 (Justification subgraph of an interconnect).
Let G = (V, E, λ) be a core connectivity graph of an
SoC and G J = (VJ , EJ , λ) be an acyclic subgraph of
G. For an interconnect e = (y, x) ∈ Enet, G J is called
a justification subgraph of e if G J satisfies all the fol-
lowing conditions.

1. Only y is a sink in G J .
2. For each edge u ∈ EJ , u has a label of either JO or

JA.
3. Let G ′ = (V ′, E ′, λ) be a subgraph of G obtained

by selecting a configuration for each core. For each
edge u ∈ EJ ,

(a) u contains all input edges of u in G ′, and
(b) u contains only one output edge of u in G ′ when

output edges have labels of JO in G ′.

Lemma 2. Let VS be the set of all source vertices in
G J of interconnect e. Then e is consecutively control-
lable for VS.

Proof: The proof is similar to the proof of Lemma 1.

Definition 8 (Propagation subgraph of a port). Let
G = (V, E, λ) be a core connectivity graph of an SoC
and G P = (VP , EP , λ) be an acyclic subgraph of G.
For a vertex v ∈ V , G P is called propagation subgraph
of v if G P satisfies all the following conditions.

1. Only v is a source in G P .
2. For each edge u ∈ EP , u has a label of either PO or

PA.
3. Let G ′ = (V ′, E ′, λ) be a subgraph of G obtained

by selecting a configuration for each core. For each
edge u ∈ EP ,

(a) u contains all output edges of u in G ′ when the
output edges have labels of PA, and

(b) u contains more than one output edge of u in G ′

when the output edges have labels of PO in G ′.

Lemma 3. Let VE be the set of all sink vertices in G P

of vertex v. Then v is consecutively observable for VE .

Proof: By Definition 8 and condition 2 of
Definition 6, all edges in G P can be used to propa-
gate test responses consecutively at the speed of system
clock since each edge in G P represents either a consec-
utively transparent path or an interconnect, and has a
label of either PO or PA. By condition 1 of Definition 8,
there exist simple paths from v to each element in VE .
By condition 3 of Definition 8, all edges in the same
core have the same ID number of configuration since
only one configuration is selected for each core. Let v′

be the vertex in Vin (i.e., v′ is an input port of a core). If
a configuration to realize a consecutive transparency of
v′ is selected and the consecutively transparent paths
for v′ are type PA, all consecutively transparent paths
for v′ exist in G P (condition 3(a) of Definition 8). If a
configuration to realize a consecutive transparency of
v′ is selected and the consecutively transparent paths
for v′ are type PO, there exist at least one consecu-
tively transparent path for v′ G P (condition 3(b) of
Definition 8). If a configuration to realize a consecu-
tive transparency of v′ is not selected, v′ is a sink vertex
in G P .

Therefore, we conclude that any response sequence
appeared at v can be propagate to VE along all simple
paths in G P consecutively at the speed of system clock.
This completes the proof.

Theorem 1. Let G = (V, E, λ) be a core connec-
tivity graph of an SoC. An SoC is said to be consec-
utively testable if the SoC satisfies the following two
conditions.

1. For each output port v ∈ Vout of each core c ∈ C,

there exist one justification subgraph G J of c and
one propagation subgraph G P of v where G J and
G P are disjoint and satisfy the following conditions.

• if TPS/TRS type required to test c is SBIST G J =
G P = φ

• if TPS/TRS type required to test c is Soff VS ⊆ VPI,
VE ⊆ VPO

• if TPS/TRS type required to test c is Son VS ⊆
(VPI ∪ Vsource), VE ⊆ (VPO ∪ Vsink).

2. For each interconnect e = (y, x) ∈ Enet, there
exist one justification subgraph G J of e and one
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propagation subgraph G P of x where G J and G P

are disjoint and satisfy the following conditions.

• VS ⊆ (VPI ∪ Vsource), VE ⊆ (VPO ∪ Vsink).

Proof: The proof follows from Definitions 2–4 and
Lemmas 1–3.

5. DFT for Consecutive Testability

This section presents a design-for-testability (DFT)
method that makes a given SoC consecutively testable.
We assume that each individual core is testable by ei-
ther external test or built-in self test. In case a core
is testable by external test, a pre-computed test set is
available for the core which, if applied to the core, will
result in a very high fault coverage. Additionally, we
assume (i) the internal design of the cores cannot be
modified by DFT due to IP (Intellectual Property) pro-
tection and (ii) control signals for configurations can
be controlled independently of normal operations. In
the rest of this paper, we consider the DFT under such
assumptions.

5.1. Problem Formulation

Each core (interconnect) in a consecutively testable
SoC is consecutively controllable for the required TPS
and consecutively observable for the required TRS.
In other words, for each output port v of each core
c ∈ C , a core connectivity graph G that represents a
consecutively testable SoC has one justification sub-
graph G J of c and one propagation subgraph G P of v

where G J and G P are disjoint and satisfy the condi-
tion 1 of Theorem 1. Similarly, for each interconnect
e = (y, x) ∈ Enet, there exist one justification sub-
graph G J of e and one propagation subgraph G P of x
where G J and G P are disjoint and satisfy the condition
2 of Theorem 1.

When a core (an interconnect) in a given SoC is
not consecutively controllable for the required TPS,
paths from the TPS are added by using test multiplexers
(MUXes) in the proposed DFT (Fig. 8(a)). Similarly,
when a core (an interconnect) in a given SoC is not
consecutively observable for the required TRS, paths
to the TRS are added by using test MUXes (Fig. 8(a)).
When an interconnect-under-test is directly connected
to an input or output port of a core which is not consec-
utively transparent, it is necessary to isolate the inter-
connect from the core in order to make the interconnect

Fig. 8. DFT elements. (a) DFT for consecutive test access; (b) DFT
for isolation of interconnection under test.

consecutively test accessible. This isolation is imple-
mented by using test MUXes and registers (Fig. 8(b)).
Assuming that any SoC includes enough number of
TPSs and TRSs to make each core (each interconnect)
consecutively controllable and observable, we formu-
late a DFT for making the SoC consecutively testable
as the following optimization problem.

Definition 9. DFT for consecutive testability
Input: An SoC (a core connectivity graph)
Output: A consecutively testable SoC
Optimization: Minimizing hardware overhead (i.e.,
total bit width of added MUXes and registers).

5.2. DFT Algorithm

We propose a DFT algorithm for consecutive testabil-
ity. The algorithm consists of the following four stages.

Stage 1. Augment a given SoC so that all cores are
consecutively controllable for the required TPS.

Stage 2. Augment a given SoC so that all cores are
consecutively observable for the required TRS.

Stage 3. Augment a given SoC so that all interconnects
are consecutively controllable for the required TPS.

Stage 4. Augment a given SoC so that all interconnects
are consecutively observable for the required TRS.

5.2.1. DFT for Consecutive Controllability of Cores
(Stage 1). The objective of the first stage is to mod-
ify a given SoC with minimum hardware overhead so
that all cores are consecutively controllable for the re-
quired TPS (i.e., each core c ∈ C has a justification
subgraph G J of c where G J satisfies the condition 1
of Theorem 1). The strategy of the algorithm is that,
for each core, it first creates control initial graph, and
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then, it creates control middle graph. After that, it in-
duces conditions such that the control middle graph
satisfies the Definition 6 and the core is consecutively
controllable for the required TPS. Finally, the algorithm
formulates the DFT in this stage as an integer linear
programming problem. All cores are made consecu-
tively controllable with minimum hardware overhead
by solving the integer linear programming problem.

5.2.1.1. Step 1: Creation of Control Initial Graph.
The control initial graph GJc of a core c ∈ C is created
from a core connectivity graph G as follows.

1. Remove the edges which have labels of c and let the
vertices which correspond to the input ports of c be
sinks.

2. Remove the edges which have labels of neither JA
nor JO.

3. We define the control initial graph GJc as the set of
vertices and edges reachable to sinks.

Fig. 9 illustrates a control initial graph GJc6 . Each
edge in GJc6 has a label of either JO or JA and
the number beside e ∈ Ecore represents a label of
configuration ID.

Let AJc be the set of cores that exist in GJc . Here, a
core c′ ∈ C that exists in GJc means that there exists
more than one edge which has a label of c′ in GJc . For
each a ∈ AJc , let BJa be the set of all configuration IDs
of a. We define KJc as the following equation.

K Jc =
∏

a∈AJc

BJa

= BJa1 × BJa2 × BJa3 × . . . .

Fig. 9. Control initial graph G Jc6 .

Fig. 10. Control middle graph GJc6,k1 .

A control initial graph GJc contains several con-
figurations for each core a ∈ AJc , and consecutive
transparency of each core a ∈ AJc is not realized.

5.2.1.2. Step 2: Creation of Control Middle Graph.
For each k ∈ KJc , the control middle graph GJc,k is cre-
ated from a control initial graph GJc as follows.

1. For each a ∈ AJc , select a configuration that corre-
sponds to k.

2. We define the control middle graph GJc,k as the set
of vertices and edges reachable to sinks.

Fig. 10 illustrates a control middle graph GJc6,k1 .
JO and JA beside e ∈ E represent types of consecu-
tively transparent path e. A control middle graph GJc,k

contains only one configuration for each core a ∈ AJc ,
and consecutive transparency of each core a ∈ AJc is
realized.

For GJc,k , let Q1
Jc,k

, Q2
Jc,k

and Q3
Jc,k

be the sets of all
vertices q ∈ GJc,k that satisfies the following conditions
respectively (Fig. 11).

1. Q1
Jc,k

: q is a source.
2. Q2

Jc,k
: q has more than two output edges which have

labels of JO.
3. Q3

Jc,k
: There exist cycles which contain q.

We define QJc,k as follows.

QJc,k = Q1
Jc,k

∪ Q2
Jc,k

∪ Q3
Jc,k

Q2
Jc,k

and Q3
Jc,k

are the sets of all vertices that do not

satisfy the Definition 6. Moreover, we define Q1,PI
Jc,k

and
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Fig. 11. Q1
Jc,k

, Q2
Jc,k

, Q3
Jc,k

.

Q1,source
Jc,k

as follows.

Q1,PI
Jc,k

= Q1
Jc,k

∩ VPI, Q1,source
Jc,k

= Q1
Jc,k

∩ Vsource

Then, let Sc,k,q be the set of all simple paths from q in
Q Jc,k to each sink vertex in G Jc,k .

5.2.1.3. Step 3: Integer Linear Programming Formu-
lation. We define the following variables as integer
linear programming variables.

yc =



1 core c is consecutively controllable
for TPS

0 otherwise

ac,k =



1 GJc,k is consecutively controllable for
TPS

0 otherwise

dc,k,q =



1 GJc,k is consecutively controllable
for vertex q

0 otherwise

zq,r =



1 output edge r of vertex q is
consecutively controllable for q

0 otherwise

ms =
{

1 if MUX is inserted to simple path s

0 otherwise

xe =
{

1 if MUX is inserted to interconnect e

0 otherwise

The following integer linear programming formulation
minimizes the test overhead (i.e., total bit width
of MUXes) while making all cores consecutively
controllable.

Minimize
∑

e∈Enet

xe · width(e) (1)

Subject to:

1. for each core c ∈ C ,

yc ≥ 1 (2)

2. For each core c ∈ C which can be tested by either
Soff or Son,

∑
k∈KJc

ac,k ≥ yc (3)

3. For each element k ∈ KJc ,∑
q∈Q jc,k

dc,k,q ≥ |QJc,k | · ac,k (4)

|QJc,k | is a constant value which represents the num-
ber of elements in QJc,k .

4. (a) In case TPS type required to test c is Soff for each
vertex q ∈ (Q1

Jc,k
− Q1,PI

Jc,k
),

∑
s∈Sc,k,q

ms ≥ |Sc,k,q | · dc,k,q (5)

(b) In case TPS type required to test c is Son, for
each vertex q ∈ (Q1

Jc,k
− (Q1,PI

Jc,k
∪ Q1,source

Jc,k
)),

∑
s∈Sc,k,q

ms ≥ |Sc,k,q | · dc,k,q (6)

5. For each vertex q ∈ Q2
Jc,k

, let Rc,k,q be the set of
all output edges of q. For each element r ∈ Rc,k,q ,
let Sr

c,k,q be the set of all simple paths between r
and all sink vertices in G Jc,k . Then, for each vertex
q ∈ Q2

Jc,k
,

∑
r∈Rc,k,q

zq,r ≥ dc,k,q (7)

∑
s∈(Sc,k,q−Sr

c,k,q )

ms ≥ ∣∣Sc,k,q − Sr
c,k,q

∣∣ · zq,r (8)
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6. For each vertex q ∈ Q3
Jc,k

,

∑
s∈Sc,k,q

ms ≥ |Sc,k,q | · dc,k,q (9)

7. For each simple path s ∈ Sc,k,q ,

∑
e∈Es

xe ≥ ms (10)

Es represents the set of all edges which correspond to
interconnects in simple path s.

Equation (2) guarantees that all cores are consec-
utively controllable for the required TPS. If TPS type
required to test a core is either Soff or Son, more than one
GJc,k must be consecutively controllable for the TPS.
This is guaranteed by equation (3). In order to make
GJc,k consecutively controllable for the TPS, all ver-
tices in QJc,k must be consecutively controllable for the
TPS. This is guaranteed by Eq. (4). In order to make q
in Q1

Jc,k
consecutively controllable for the TPS, all sim-

ple paths in Sc,k,q must be inserted MUXes and paths
from TPS must be added. However, if q is a vertex
that represents the TPS required to test the core, q is
already consecutively controllable for the TPS. This is
guaranteed by Eqs. (5) and (6). Each vertex q in Q2

Jc,k

has more than two output edges which have label of JO,
and all the edges propagate only the same sequence. In
order to make q in Q2

Jc,k
consecutively controllable for

the TPS, MUXes must be inserted to all simple paths
which include all the output edges except one output
edge. This is guaranteed by Eqs. (7) and (8). In order to
make q in Q3

Jc,k
consecutively controllable for the TPS,

all cycles which contain q must be broken by MUXes
and paths from TPS must be added. This is guaranteed
by Eq. (9). Let s be a simple path and let Es be the
set of all edges which correspond to interconnects in
s, insertion of MUX to s means that MUX is inserted
to more than one element in Es . This is guaranteed by
Eq. (10).

Test MUXes are inserted to the edges obtained by
solving the above integer linear programming prob-
lem (Fig. 12), and all cores can be made consecutively
controllable with minimum hardware overhead. How-
ever, in case TPS type required to test core c is Soff ,
it is necessary to add TPSs of type Soff (i.e., add ver-
tices to VPI) if the sum bit width of edges that must
be inserted MUXes to make c consecutive controllable
is larger than that of available TPSs (i.e., vertices in
VPI − Q1,PI

Jc,k
). Similarly, in case TPS type required to

test core c is Son, it is necessary to add TPSs of type

Fig. 12. Insertion of a MUX to an edge ei

for consecutive controllability.

Son (i.e., add vertices to Vsource) if the same condition
as above is satisfied.

5.2.2. DFT for Consecutive Observability of Cores
(Stage 2). The objective of the second stage is to mod-
ify a given SoC with minimum hardware overhead so
that all cores are consecutively observable for the re-
quired TRS (i.e., each output port v ∈ Vout of cores
has a propagation subgraph GP of v where GP satis-
fies the condition 1 of Theorem 1). The strategy of the
algorithm is that, for each core,

Step 1: remove consecutively controllable paths for the
core.

Step 2: create observation initial graph.
Step 3: create observation middle graph.
Step 4: formulate as integer linear programming

problem.

In Step 1, the algorithm first selects each configura-
tion for the core in order to realize the consecutively
controllable paths which are already decided in Stage 1.
Then, it removes the consecutively controllable paths
from the core connectivity graph G in order to guaran-
tee that consecutively controllable paths and consec-
utively observable paths are disjoint. Procedures for
Step 2, Step 3, and Step 4 are similar to Step 1, Step 2,
and Step 3 in Stage 1, respectively. In Step 2, it creates
observation initial graph for each output port of the
core. After that, it creates observation middle graph in
Step 3. In Step 4, the algorithm induces conditions such
that the observation middle graph satisfies the Defini-
tion 8 and the output port of the core is consecutively
observable for the required TRS. Finally, the algorithm
formulates the DFT in this stage as an integer linear
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programming problem. All cores can be made consec-
utively observable with minimum hardware overhead
by solving the integer linear programming problem.

5.2.3. DFT for Consecutive Controllability of Inter-
connects (Stage 3). The objective of the third stage
is to modify a given SoC with minimum hardware
overhead so that all interconnects are consecutively
controllable for the required TPS (i.e., each inter-
connect e ∈ Enet has a justification subgraph GJ of
e where GJ satisfies the condition 2 of Theorem 1).
The algorithm for this stage is similar to that of
Stage 1 except for addition of test registers. When
an interconnect-under-test is directly connected to
the output port of a core which is not consecutively
transparent (i.e., control initial graph GJe,k for the
interconnect e is empty), it is necessary to isolate
the interconnect from the core in order to make the
interconnect consecutively test accessible (Fig. 8(b)).
Therefore, this stage can be formulated as the follow-
ing integer linear programming problem exchanging
the objective function (Eq. (1)) and constraint 2
(Eq. (3)) as follows.

Minimize

∑
e∈Enet

(xe + xe,reg) · width(e) (11)

Subject to:

2. (a) if GJe,k is empty,

xe ≥ 1 (12)

xe,reg ≥ 1 (13)

(b) otherwise,

∑
k∈K Je

ae,k ≥ ye (14)

Here, xe,reg is the integer linear programming vari-
able, and is equal to one if a test register is inserted to
interconnect e, otherwise, is equal to zero.

All interconnects can be made consecutively con-
trollable with minimum hardware overhead by solving
the integer linear programming problem.

5.2.4. DFT for Consecutive Observability of Intercon-
nects (Stage 4). The objective of the fourth stage is to
modify a given SoC with minimum hardware overhead

so that all interconnects are consecutively observable
for the required TRS (i.e., each interconnect e ∈ Enet

has a propagation subgraph G P of e where G P satis-
fies the condition 2 of Theorem 1). The algorithm for
this stage is similar to that of Stage 2 except for addition
of test registers. The procedure for addition of test reg-
isters can be presented in a similar fashion to Stage 3.
Therefore, all interconnects can be made consecutively
observable with minimum hardware overhead by solv-
ing the integer linear programming problem.

After above four stages, we can modify a given
SoC so that all cores and all interconnect are consec-
utively controllable and observable (i.e., consecutively
testable).

6. Experimental Results

In this section, we present experimental results of the
proposed method. We applied the method to three
SoC examples shown in Fig. 13. System S1 consists
of four consecutively transparent cores and two non-
consecutively transparent cores, and it contains one on-
chip TPS inside of core5 and one on-chip TRS inside of
core1. System S2 consists of six consecutively transpar-
ent cores and it has the same connectivity information
and on-chip TPS/TRS as system S1. System S3 con-
sists of eight consecutively transparent cores and have
no on-chip TPS/TRS.

We used the lp solve package from Eindhoven
University of Technology [1]. Assuming that all inter-
connects are of the same bit-width, the running time is
negligible (less than 0.01 second) for each stage of all
examples on a SUN Ultra 5 workstation. The results
of the running SoC examples are shown in Table 1.
Column “systems” denotes system name. Columns
“Stage 1” and “Stage 2”, “Stage 3”, “Stage 4” and
“Total” denote the number of DFT elements added in
Stage 1, Stage 2, Stage 3, Stage 4 and all four stages, re-
spectively. ei shows the edge to which DFT element is
added.

Table 2 shows the estimations of the area overhead.
Column “interconnects” denotes the bit width of in-
terconnects in each system. Columns “0.1” and “0.5”,
“1” and “10” of each system denote the area overhead
when we assume that the system contains 0.1 million
gates, 0.5 million gates, 1 million gates and 10 mil-
lion gates, respectively. For example, “0.61” in the first
row of the column “0.1” of system S1 shows the area
overhead of the DFT element (5 MUXes and 4 reg-
isters) when we assume that S1 contains 0.1 million
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Table 1. Results of the running SoC examples.

# DFT elements

Systems Stage 1 Stage 2 Stage 3 Stage 4 Total

S1 MUX: 2 (e3, e5) MUX: 0 MUX: 1 (e7) MUX: 2 (e3, e8) MUX: 5
Reg: 2 (e5, e7) Reg: 2 (e3, e8) Reg: 4

S2 MUX: 1 (e1) MUX: 0 MUX: 0 MUX: 0 MUX: 1
Reg: 0 Reg: 0 Reg: 0

S3 MUX: 2 (e4, e5) MUX: 3 (e3, e4, e5) MUX: 2 (e1, e9) MUX: 1 (e9) MUX: 8
Reg: 0 Reg: 0 Reg: 0

Table 2. Estimation of area overhead (%).

System S1 (million gates) System S2 (million gates) System S3 (million gates)

Interconnects (bit) 0.1 0.5 1 10 0.1 0.5 1 10 0.1 0.5 1 10

32 0.61 0.12 0.06 0.01 0.10 0.02 0.01 0.00 0.77 0.15 0.08 0.01

64 1.22 0.24 0.12 0.01 0.19 0.04 0.02 0.00 1.54 0.31 0.15 0.02

128 2.44 0.48 0.24 0.02 0.38 0.08 0.04 0.00 3.08 0.62 0.31 0.03

256 4.87 0.97 0.49 0.05 0.77 0.15 0.08 0.01 6.15 1.23 0.62 0.06

512 9.73 1.94 0.97 0.10 1.54 0.31 0.15 0.02 12.29 2.46 1.23 0.12

1024 19.46 3.89 1.95 0.20 3.07 0.61 0.31 0.03 24.58 4.92 2.46 0.25

Fig. 13. SoC examples. (a) System S1; (b) System S2; (c) System S3.

gates and all interconnects in S1 are of 32 bit
width.

In our proposed method, the delay overhead is neg-
ligible since at most only one multiplexer is inserted to
each interconnect.

7. Conclusions

In this paper, we introduced a new testability called con-
secutive testability. For a consecutively testable SoC,
testing can be performed as follows. Test patterns of
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a core are propagated to all input ports of the core
from TPS, and the test responses appeared at an out-
put port of the core are propagated to TRS consecu-
tively at the speed of system clock. The propagation
of test patterns and responses is achieved by using
interconnects and consecutively transparent paths of
surrounding cores. All interconnects can be tested in
a similar fashion. Therefore, it is possible to apply
any test sequence and observe any response sequence
consecutively at the speed of system clock. We also
proposed a design-for-testability method for making
a given SoC consecutively testable based on integer
linear programming problem. Our future work is to
propose a DFT method for making cores consecutively
transparent with minimum hardware overhead.
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